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PREFACE

On December 9-12, 1992 over 150 scientists from around the world gathered
in Columb"i to ceebrate the sixtieth birthday of Yakir Aharonov. The major portion
of this celebration was a three day conference on the Fundamental Aspects of
Quantum Theory. This volume is the proceedings of that conference and a brief
biographical sketch of Yakir Aharonov as presented by Alex Pines after the
banquet.

Among the topics discussed were the Aharonov-Bohm effect, geometric
phases, gauge fields, black holes, quantum gravity, non-locality and geometry, spin
and statistics, phenomenology, and quantum reality. These topics were chosen since
they are all areas in which Yakir Aharonov has made contributions and
suggestions.

Years ago developments in the fundamentals of quantum theory were
primarily of interest only to theoreticians. Topics such as quantum gravity, non-
locality and geometry, and black boles are still with us today; however, as can be
seen from the table of contents, applications abound. Experiments have been
performed showing flux lines, quantum interferometers are in use, and condensed
matter applications and statistical applications exist. Recent satellite data provides
information on black holes. The Aharonov-Bohm effect is now a laboratory
phenomenon. Yakir Aharonov has recently demonstrated the reality of the
wavefunction for a single particle.

In the years since the Aharonov-Bohm effect was proposed, Yakir Aharonov
has made important suggestions and contributions to many areas related to
fundamental interpretation of quantum theory. He has always taken the viewpoint
that quantum theoxy must be studied to develop the necessary intuition to be able
to understand what the theory is really telling us. Without this intuition we will
often not ask the "right" question, and hence, misinterpret the basic nature of
reality. That is, if we ask classical questions, we will see only some aspects of
quantum theory. Intuition will enable us to ask the proper quantum question to
discover the full implication of the theory. We dedicate this volume to him.

We had planned to have David Bohm, FRS, as a speaker at theoe sessions
and to help honor his former student. We deeply regret his uitimely death. le was
a great physicist with a deep understanding of quantum theory and a humanistic
person with a wide range of interests.

We express our appreciation to the aid provided by the members of the
Scientific Advisory Committee: Michael Berry (Bristol), David Bohm (London),
Roger Penrose (Oxford), Norman Ramsey (Harvard), Charles Townes (Berkeley),
John Wneeler (Princeton) and Chen Ning Yang (Stony Brook). We also express out
sincere appreciation to the other members of the Local Organizing Committee: Chi-
Kwan Au, Frank Avignone, Richard Creswick, Horacio Farach, James Knight,
Pawel Mazur, and Carl Rosenfeld. Without the help of both of these groups, this
conference would not have been possible. We also gratefully acknowledge the
generous support for this conference provided by President Palms of the University
of South Carolina, the National Science Foundation, the Department of Energy, the
Office of Naval Research, and Hitachi Ltd.

University of South Carolina, Columbia Jeeva S. Anandan
'tember 1994 John L. Saiko
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After-Banquet Talk in Honor of Aharonov's 60th Birthday

Symposium on Fundamental Aspects of Quantum Theory
Columbia, South Carolina, December 10-12, 1992

A. Pines
University of California, Berkeley

Yakir Aharonov: From A to B

Following the dictates of David Mermin, I have prepared some spontaneous remarks:

Ladies and Gentiles,

You see before you a most reluctant after-dinner speaker. Someone once said that if
you took all the after-dinner speakers and laid them head-to-toe at the equator,. ....
that would be a very good thing. In fact, some years ago, my friend Anatole Abragam
warned me - Alex, when they start asking you to give after-dinner speeches, it might
be an indication that you are no longer on the way up. So when I was asked to talk
about Aharonov tonight, the first two words that, came to my mind were - oy vey.

But, ladies and gentlemen, this is no ordinary occasion - Yakir Aharonov is not
only a truly great scientist and one of the most brilliant and stimulating people
I have ever known, he is an extraordinary colleague and dear friend, and it is a
privilege and a pleasure for me to say a few words about him. You might well ask,
why me, a chemist, talking about a physi-
cist. Well, Aharonov himself once paid me
what he considers the greatest compliment
you guys can give a chemist - Come on,
Alex, you're not really a chemist, you're
too smart,...you're a physicist. Yakir,
it's your birthday, let me return the com-
pliment - you don't look seventy.

Yakir Aharonov was born in 1932, in Haifa,
Israel, to Russian parents. He grew up, so
to speak, in Kiryat Haim, where, already

3
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at age five, it was abundantly clear that
he was a mathematical prodigy. The res-
idents of Kiryat Haim soon became ac-
customed to the apparition of the boy
Aharonov accosting and threatening them
in the streets, challcnging them to give him
a problem -. a novel concept of mathemat-
ical mugging, your problem or your life,

Because his parents were unwilling to teach
him chess (a waste of time), Aharonov
traded some strawberries from his yard to
a neighbor, an older child, who taught him
the game. When not playing with his
friend, Aharonov would play by himself,
one hand against the othcr, one playing
white and the other black. It is not known
which hand was stronger, his left hand or
his other left hand. As many of you know,
Aharonov had a natural aptitude for the
game and became a very strong player, to-

day an Israeli candidate master. During
his period as Miller Professor at Berkeley, ,,

Aharonov made an unforgettable impres-
sion not only on the scientists, but also
on the nationally renowned Berkeley chess
community. As a young man, Aharonov
had a gift not only for math and chess; he
was good at all sorts of games and puz-
zles. He discovered, to his joy, that his
prowess at backgammon made him almost
irresistible to middle-eastern women.

The last time I played blitz chess against
Aharonov, he again asked if I wanted a
handicap. I related to him the (perhaps
apocryphal) story told to me recently by
John Rowlinson about Max Euwe, the



4

former world chess champion. Euwe was
on a train analyzing a game on his pocket
ches st. A fellow traveler in the compart-
omeat asked him if he played chess, to which

Euwe replied that yes, he did. Would you
like to play a game, asked the other fel-
low; sure, said Euwe, who proceeded to
set up the pieces and then removed one
of his rooks. What are you doing, asked
his partner. I'm giving you a rook, replied
Euwe. You're giving me a rook? You've
never played against me, you don't know
who I am, how can you give me a roo!X? If
I couldn't give you a rook, said Euwe, I'd
know who you are.

Well, Aharonov doesn't give me a rook, but he does give me a differential time
handicap in order to imbue the game with some semblance of balance. In other words,
he beats the heil out of me. It is because of Aharonov that I have now resorted to* t playing for money against small childlren. But Aharonov too is fallible - about twenty
five years ago, in New York, he played, and lost, three games against Bobby Fischer.
Aharonov maintains that this is pretty good; he lost only three games, so he did

0 better than the famous Russian, Taimanov, and the great Dane, Larsen, who each
lost six games against Fischer.

At age eleven, Aharonov took up the violin, an instnrment that he cherishes to this
very day. He sooin discovered that the best acoustics for his instrument were in the
"kitchen and bathroom. It was later, after he read how Einstein hax independently
made the same discovery, that Aharonov decided he would become a physicist.

After gradua.ion from high school,
Aharoriov was inducted into the arny: -

into the artillery division. Yes, the ar-
tillery diviion. He soon lost interest
in experirmntal artillery after he proved
that quantum corrections to the bal-
listic trajectories were insignificant and,
"much to the relief of the command-
ing authord-tes, hc volunteered for asn
army research unit. The only legacy of

LI
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Aharonov's army experience was his occa-
sional, misguided tendency to force himself V
upon his friends as a bodyguard.

After his discharge from the aimy,
Aharonov studied at the Technion, the Is-
rael Institute of Technology, where he met
the late David Bohm. Here Aharonov is
shown at the Technion with a co-student
whom he identifies as Tsachi Gozani.
Gozani allegedly spent much of his time
begging Aharonov to stay away from the
ePparatus. After discussions with fac-
ulty members who feared for their lives,
Aharonov seriously contemplated becom-
ing a theoretician. He moved with Bohm
to Bristol to do his Ph.D. and it was
there that the famous Aharonov-Bohm ef-
fect was conceived, elucidated and pub-
lished.

One of the external examiners
for Aharonov's Ph.D. was Rudolph Puierls,
who claimed he did not believe some argu-
ment that Aharonov had formulated about
energy-time uncertainty, but Pcierls could
not find an error, lie invited Aharonov to
Birmingham, where they sat and argued
for days, after which Peierls was convinced
and said that he now believed. But Yakir
tells me that just two years ago, Peicrls was
in Israel for the Landau Symposium - he
ran into Aharonov and said hey, aren't you
Aharonov? Yes, I am. Well, said Peierls,
now I don't believe you again.
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It was during his time in England that

Aharonov became concerned about his Is-

raeli accent, because he felt that it was

h'.i ring his chances with women. He

arranged for intensive tutoring sessions in

elocution, seeking to acquire not just any

old accent, but an Oxford accent, and de-

voting considerable time and effort to the

enterprise. On the day of the first ex-

periment with his ne"c accent, an excited

Aharonov ventured into the streets of Bris-

tol and asked for directions to go some-

where; I imagine that we can all sympa-

thize with his frustration when the tnswer

camne back in Hebrew.

Following his Ph.D., Aharonov spent sev-

eral years at Brandeis and Yeshiva Univer- i

sitics in the United States. In 1962, he

created a sensation when he talked about

the Aharonov-Bohm effect at the Cincin-

nati Conference on quantum theory (the

other participants included Dirac, Furry,

Podolsky, Rosen and Wigner). The con-

ference made headlines despite the many

other exciting events in Cincinnati at the

time.

In 1966, Aharonov joined the faculty at

South Carolina and, in 1967, he became

Full Professor at Tel-Aviv University. He They Tackle Tanglad 14(s Wrei Of The Atom'

was subsequently honored with chairs in

physics both at Tel-Aviv and here in South

Carolina, where, I understand, he is again

contemplating changing his accent. HiN

colleagues here know that, for Aharonov :.. a .
physics is not just a job - it is a passion, NOdPy P ..•

lile chess. -hat Tel Aviv University and T"" -'---r 
Pa

the University of South Carolina pay him ýq §' 11 lIM"V

to indulge in his passion remains for him .

unfathomable. Yakir, may it become yet.

more unfathomable.
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Over the years, Aharonov has further cultivated, carefully and successfully, his image
as a shlemiel, thereby shielding him from annoying appeals to help around the lab,
the department or the house, and leaving him time to do what he loves and does
best - to think. And, as many of us know, Aharonov thinks best in an atmosphere
composed of ten percent oxygen, forty percent nitrogen and fifty percent cigar smoke.
What kind of cigar smoke? Well, let's just say that many years ago, I gave him one
of my prized Montecristos from Havana, and he was able to exchange it for a year's
supply of his beloved White Owls. Aharonov continues with his tradition of visiting
Berkeley whenever he runs out of cigars, much to the delight of my children, by whom
he is much admired.

Yakir Aharonov is a giant of modern physics. From his Ph.D. with Bohm to his
work on geometric phases, he has made monumental contributions to quantum the-
ory, and he has profoundly advanced our understanding of electromagnetism and
other gauge theories of fundamental interactions. On two occasions, John Maddox,
the editor of Nature (the science magazine), suggested, justifiably, many of us be-
lieved, that Aharonov, Bohm and Berry should get the Nobel Prize for physics. In
his first editorial on the subject, in 1989, Maddox writes about Abrahamov and the
Abrahamov-Bohm effect; in his second editorial on the subject, this year, he makes
a slightly better approximation, writing about Aharanov and the Aharanov-Bohm
effect. And listen to the perverse, yet quaint 1989 description of the effect - Abra-
hamov and Bohm, independently of M. J. Berry, have shown that the supposedly
insignificant complex phase of Maxwell's electromagnetic potential is measurable.

Well, Yakir Aharonov is no stranger to
honor and to ceremony. Hie is a member
of the Israel and U.S. National Academies
of Sciences, and amongst his many awards
are the prestigious Israel Prize in exact
sciences and the Elliot Cresson Medal
of the Frankin Institute in Philadelphia.
But Aharonov is particularly proud of the
knighthood bestowed upon him by his
friends on the occasion of his fiftieth birth-
day which, he calculates, was ten years ago.
I guess the citation reads - why is this
knight different from all other knights?



Ladies and gentlemen, I was asked to make
my remarks eitherwi~tye-rbrief--solmust '"la *' . ,

come to a close. WN.....
Yakir Aharcnov is a man with a legendary
hunger for science and for life, But be-
yond his genius and his accomplishments,
Aharonov has that rarcst of human qual-
ities - he is a mensch, Dear Yakir, I anm
sure that I speak on behalf of everyone
here when I say that you have earned our
respect. On the occasion of your sixti-
eth birthday, permit me to offer a toast to
you and your family - the Aharonovs, the
Abrahaxnovs and the Aharanovs - Yakir
and Nilli ........ to another sixty years.

THE

PHYSICAL REVIEW
S_,.S,, V_ I11. N.. I AIIIIUST I. M%5•

SigWIel-laii~ of l•lftU ou ,3litk 1'ut.Oil I, hq l tnilkI Thq7

M... ,*---,M. '.,,la...,.Sn,'3a,...

1W Sd, W. II31kntn U ~ ~ .S It 61 V3 -T1

I. 1Ih 3

I. , 1,, 39,fl0,U.,. ,.,, ., IS. l.Inilq1-

.a4 -tu aw -k ll . kihi a . .i .fair 3 .m g'nr• .. I . h I fi b K .{•hla tlad VQ•a(.s 33

All. ý 6

3. ~ ~ ~ ~ y "y.aa 33.aa

Ia a ~.la .a a.ha.,.,ha ~a.3had , "'n.



SECTION 2

AHARONOV-BOHM EFFECT AND
GEOMETRIC PHASES



DYNAMIC O BSERVATTON OF FLUX LINES
BASED ON THE AB EFFECT PRINCIPLE

A. TONOMURA
Advanced Research Laboratory, Hitachi, Ltd.

&

Thnomura Electron Wavefront Project, ERATO, JRDC
Hatoyama, Saitama 350-03, Japan

ABSTR ACT

Flux lines penetrating superconducting films are directly observed with a "co-
hereit" field-emission electron beam. These flux lines are detected as phase
shifts of an electron beam passing through the films due to the Aharonov-Bohil
effect.

1. INTRODUCTION

The behavior of flux lines plays ;1 decisive role in the fundamentals
and practical applications of superconductivity.

Although much effort has been expended on developing methods to
directly observe flux lines, until recently flux lines have evaded direct
observation because they are shape(d like an extremely thin thread and
have a small flux value of h/2e(= 2 x 10-15 Wb). In 1967, Essman and
TrSauble'1) used the Bitter technique to directly observe the flux-line
lattice predicted by Abrikosov.2) In this technique, fine ferromagnetic
particles are sprinkled over the superconductor surface and the loca-
tion of flux lines is observed as a replica with an electron microscope.
This technique has recently been used to elucidate the microscopic
characteristics of high-'Fc superconductors.') However, this technique
is e('se itially static, and it cannot determine the dynamic behavior
of flux lines. New techni(lues for observing flux-lines have also been
(leveloped.4'5 ) For example, Hess, et al.4) used a scanning tunneling mii-
croscope to observe the flux-line lattice of NbSe2. It wever, dynamic
observation is still not feasible with these techniques.

13
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The possibility of direct observation using a transmission electron
microscope has been theoretically investigated making use of the fact
that an electron beam is deflected"), or phase-shifted by flux lines:
Despite trials, the deflection angle is too small--less than 1 x 10-'
rad--to observe flux lines as a Lorentz micrograph (a greatly defo-
cused electron micrograph). Or, in other words, the phase shift of the
electron beam is produced due to the Aharonov-Bohm effect 9) when
the beam passes through a flux line, which is, in this case, less than 7r.
This phase shift was actually detected by electron interferometry."' 11)
Using this method, Boersch, et al."1) observed tile location of a single
flux line leaking from a superconducting tube as a shift of parallel
interference fringes by half their spacing, followed by thermally acti-
vated jumps of flux lines from one pinning center to another with A
time resolution of around one second.

However, as a result of the development of a "coherent" field-
emission electron beam,1 31 4 ) it has become possible to measure the
phase distribution of an electron beam to a precision of 1/100 of the
wavelcngthlIa) through electron holography."•'-) In addition, the two-
be.ii-n interference pattern has become directly observable on the flu-
orescent screen, permitting dynamic observation.

Such technical development has helped to open the way to direct
observation of flux lines. In this method, a single flux line leaking from
a superconductor surface could be observed directly and even dynani-
ically as a contour fringe in an interference micrograph. Furthermore,
for the first time, flux lines were also observed in the transmission
irode.

2. EXPERIMENTAL APPARATUS

Experiments were carried out using holography electron micro-
scopes. The holography electron microscopes used in the present ex-
periments are transmission electron microscopes equipped with field-
emission electron guns',3 14) for coherent specimen illumination, and
electron biprisms'9 ) for hologram formation.

A cut-away drawing of our 350-kV holography electron microscope2 )
is shown in Fig. 1. The main column below the objective lens is
almost the same as that of a Hlitachi H0-9000 transmission electron
microscope. The illumination system consists of a cold field-emission
electron gun and double condenser lenses.

The specimen is illuminated by a collimated electron beam. The
simall illunmination angle 2,3, which is indispensable for forming elec-
tron holograms, or Lorentz micrographs, can be reduced to 5 x 10- 8



Electron gun .--- ~

Specimen chamber _

- Electron bipriam

Fig,.1. 350kV holography ele(:~troll mic~roscope.
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rad by the double condenser lenses. A low-temperature specimen
stage is substituted when flux lines re observed. The temperature
of the specimen holder can be reduced to 4.5K. At the same time, a
magnetic field of up to 150 Gauss can be applied in the horizontal
direction.

1'Iectron biprismsl9) are installed at two positions, one below the
objective lens and the other below the intermediate tens. The ap-
propriate biprism position can be selected after the optical conditions
such as magnification have been determined.The specimen or hologram image can be enlarged by magnifying
lenses as in the electron microscope, which is usually recorded on filni.
Ilowever, for dynamic observation, it is recorded oin videotape through
a television system attached to the microscope.

3. EXPERIMENTAL METHOD

Two methods were employed in tho present experirnents, i.e., elec-
t ton holography and l,orentz microscopy. Magnetic lines of force leak-
ing froin tlhe superconductor surface were directly observed as contoiii
fringes in an electron interference micrograph obtained through the
electron holography process. In the Lorentz inicrograph with awi np-
propriate defocusing, flux lines in the superconduictor were obslerved
as globules with black and white contrast pairs.

3. 1 lL'ct.ron !Jolography

IFlcctron holography 16) is a two-step imaging lnetllod using ,lec-
tron waves and light waves (see Fig. 2). An electron wave illhiiiat(s
an object and is scattered. A reference wave that has been tilted by
a prisin is then projected onto the scattered wave to form an interfler-
ence pattern that is recorded on film. This film, called a holograii, is
subsequently illuminated by a collimated laser beam. The exact im-
age is then three-dimensionally reproduced. An additional conjugalie
image is also produced in holography.

Once electron wavefronts have been reproduced as light wavefronts,
versatile optical techniques can be used to supplement electron optics.

An interference micrograph, or contour map of the wavefront, can
be obtained by simply overlap ping an optical plane wave with this
reconstructed wave (see Fig. 3(a)). If a conjugate wavefro lt insteal
of a plane wave overlaps this wavefront, the phase difference becomes
twice as large., and is as if the phase distribution were amplified two
tunes, as shown in Fig. 3(b). By repeating this technique, a phase
shift can be detected even as small as 1/100 of a waveleagth.
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Electron wave Reference----. • ••..wave

Holoqr~am A
Object

Hologram

Light wave
S"-f

Image ....

Hologram
Virtual image Real image

Fig.2. Principle behind electron holograpy.

Reconstructed
wavefront -

Planewave onjug~atoPlane wave wavefront,
SI .

(a) (b)

Fig.3. Principle behind phase amplification.
(a) Contour map. (b)Twice-amplified contour map.



18

This phase-amplified interference electron microscopy provides infor-
mation about microscopic distribution of the electric"1 ) and magnetic
22) fields.

Flux lines can be directly observed in a twice phase-amplified in-
terference micrograph. The observation principle is illustrated in Fig.
4. When an electron beam is incident to a uniform magnetic field, the
beam is deflected to the left by the Lorentz force, which acts perpen-
dicularly to the direction of the magnetic field. Viewing electrons as
waves, the introduction of a "wavefront" perpendicular to the electron
trajectory will suffice. The incident electron beam is a plane wave,
but the outgoing beam becomes a plane wave with the left side tilted
up. In other words, the wavefront is viewed as rotating around a ro-
tating axis; the magnetic line of force. From a contour map of this
wavefront, it can be seen that the contour lines follow the magnetic
lines of force. This is because the height of the magnetic liin. of force
is the same along it. Thus, a very simple conclusion can be reached:
when a magnetic field is observed in an interference electron micro-
graph, the contour fringes can be considered to represent magnetic
lines of force.

Electrons

r ID

Mognetic
field

" ~Wmvfront

CCoontiurs

Fig.'] Pri1nciple behind magnetic flux observation.
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The interference fringes are also quantitative. A simple calculation
convinces us that a certain minute amount of magnetic flux, h/e, is
flowing between adjacent contour fringes. This is, in a sense, quite
natural. A superconductive flux meter, SQUID, can measure the flux
in units of h/2e by using Cooper pair interference. An electron inter-
ference micrograph is formed by the interference of electrons rather
than Cooper pairs. Therefore, the flux unit is h/e, since the electric
charge is e rather than 2e. However, the principle is the same.

It can be concluded then that a contour fringe in a twice phase-
amplified interference micrograph indicates a single flux line.

3.1.1 Lorentz microscopy

A Lorentz micrograph is a greatly defocused electron micrograph.
The principle behind it is shown in Fig. 5. When an electron beam
is incident to a ferromagnetic thin film, which has two magnetic do-
mains, the beam is deflected by the magnetization, and the deflection
directions are different for tbl two domains. Therefore, when the elec

I-I--17Elscfron
Magnetic

~ film

WQvefront

Observatlon
plans

Fig.5. Lorentz microscopy.

-.. . . .. . .. -l- 1 li l l - l nlI- ri i
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tron intensity distribution is observed in the lower plane, the domain
wall can be observed as a line of the weak intensity. Thus, Lorentz
microscopy is effective when the magnetic field changes suddenly, such
as at a domain boundary in a ferromagnetic film. However, it is not
easy to observe flux lines in free space by Lorentz microscopy, since
magnetic fields there are distributed smoothly in a harmonic form.

4. EXPERIMENTAL RESULTS

Individual flux lines were statically and dynamically observed using
holography electron microscopes.

4. 1 Observation in the Profile Mode

Flux lines leaking out from a superconductor surface can be directly
observed as contour frinf 's in a twice phase-amplified interference
micrograph through electr mi holography, as explained in the previous
section.

The experimental arrangement is shown in Fig. 6. A thin tungsten
wire 4 0Irn in diameter was used as the substrate for a superconduct-
ing specimen. Lead was evaporated onto one side of the wire. A
magnetic field of a few Gauss or less was applied to the evaporated
lead film. The specimen was cooled to 4.5K. In a weak magnetic
field, the magnetic lines are excluded from the superconductor by the
Meissner effect,

Electron Wave

Q Magnetic
~field~

Superconductor

Fig.6. Experimental arrangement to observe flux lines
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but if the magnetic field is strong, the magnetic lines of force penetrate
the superconductor in the form of flux lines. By applying an electron
beam to the specimen from above, the magnetic lines of force of flux
lines were observed through the process of electron holography.

Figure 7(a) shows the single flux line observed when the supercon-
ducting film was 0.2pm thick. In this figure, the phase difference is
amplified by a factor of two. Therefore, one interference fringe cor-
responds to one flux line. A single flux line is captured in the right
part of this photograph. The magnetic line of force is produced from
an extremely small area of the lead surface, and then spreads out into
free space.

In addition to observing isolated flux lines, another surprising re-
suit was found. A pair of flux lines were observed that were oriented
in opposite directions and connected by magnetic )ines of force (Fig.
7 (a) left). The following explanation may be considered. When the
specimen is cooled below the critical temperature, the lead becomes
superconductive. During the cooling, however, the specimen experi-
ences a state where the flux-line pair appears and disappears repeat-
edly due to thermal excitation ") and is pinned by some imperfection
in the superconductor, eventually resulting in the flux being frozen.

What happens when the thickness of the superconducting thin film
is increased? Figure 7(b) shows the state of the magnetic lines of force
when the thickness is lm. It can be seen that the state changes
completely. Magnetic flux penetrates the superconductor not as in-

"Vacuum
__Pb
(b)

Fig.7. Interference micrograph of flux lines leaking from Pb film
(Phase amplification: x2).
(a)Thickness 0. 2 tsm. (b)Thickness 1pm.
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dividual flux lines but in a bundle. The figure does not show any
flux-line pairs.

Our explanation for this phenomenon is as follows. Becauc.e lead is
a type-I superconductor, the strong magnetic field applied to it par-
tially destroys the superconductive state in some parts of the speci-
men (intermediate state). Figure 7(b) is a photograph showing that
the magnetic lines of force penetrate the parts of the specimen where
superconductivity has been destroyed. However, since the other sur-
rounding parts axe still superconductive, the total amount of pen-
etrating magnetic flux is an integral multiple of the flux quantum,
h/2e. Thin superconducting films (Fig. 7(a)) were an exception. In
that case, however, lead behaved like a type-II superconductor and
the flux penetrated the superconductor in the form of individual flux

lnsSince the flux itself can be observed using electron holography,
its dynamic behavior can be observed."4 ) In this case, after electron
holograms were dynamically recorded on videotape, a twice phase-
amplified contour map of each frame was numerically reconstructed,
and again recorded on videotape. Although off line, flux dynamics
could be observed with a time resolution of 1/30 of a second.

The experiment was carried out as follows. Trapped fluxes in a Pb
thin filt.ý remained stationary at 5K. However, when the sample tem-
perature was raised, the flux line diameter gradually increased. Just
below the critical temperature, the flux lines began to move. Figure
8 shows a section from the videotape that recorded this movement.

Three flux lines in the upward direction are trapped in the super-
conductor andI their magnetic lines of force can be seen in Fig. 8(a).
At 0.13 seconds, the flux lines moved suddenly to the left after only
the lapse of a single frame. Two upward flux lines end two downward

r14^--

(a) (b) (W

Fig.8. Dynamical observation of trapped flux line near Tc.

(a) 0 seconds. (b)O.13 seconds later. (c) 1.33 seconds later.
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flux lines are connected by magnetic lines. At 1.33 seconds, downward
flux lines moved to the right and only a broad single magnetic line
remained.

Although this flux movement due to thermal activation is random,
a similar experiment is now in progress wnere a current is applied to
the superconductor. In this case, flux lines receive a Lorentz force
determined by the current, but with opposite directions for upward
and downward flux lines. The pinning force at each pinning site can
thus be measured.

4.2 Observation in the Transmission Mode

Flux lines have recently been observed in the transmission mode. 25 )
A two-dimensional distribution of flux lines was seen dynamically by
Lorentz microscopy with a 300-kV holography electron microscope.

The experimental arrangement is shown in Fig. 9. A Nb thin film
was prepared by chemically etching a roll film. The film, set on a
low-temperature stage, was tilted at 450 to the incident beam with
300 keV electrons falling vertically, so that the electrons could receive
the flux-line magnetic fields penetrating the sample perpendicularly
to its surfacm-, An external magnetic field of up to 150 Gauss was
applied hori;' ,ntally.

The information about the flux lines is contained in the phase dis-
tribution, or in other words, the wavefront distortion of the trans-
mitted electron beam. This information cannot be read from a con-
ventional electron micrograph where only the intensity is recorded.
However, the distortion reveals itself in a defocused image, i.e.. a
Lorentz micrograph, in which a flux line can be seen as a tiny spot;
one half bright and the other half dark.

The sam,)e was first cooled down to 4.5K and the applied mag-
netic field D was gradually increased. As B was increased, flux lines
suddenly began to penetrate the film at B = 32 Gauss, and thei, tnun-
ber increased with B. Their dynamic behavior was quite interusting:
at first, only a few flux lines appeared here and there in the field of
view, 15 x 10gim 2 , oscillating around their own pinning centers and
occasionally hopping from one center to another. These movements
continued as long as the flux lines were not closely packed (B < 100
Ga u ss).

An example of the equilibrium Lorentz micrographs at B = 100
Gauss is shown in Fig. 10. The film has a fairly uniform thickness in
the region shown, but is bent along the black curves, called bend con-
tours, which are due to Bragg reflections at the atomic plane brought
to a favorable angle by bending. Each spot with a black and white
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contrast is the image of a single flux line. This contrast reversed, as
expected, when the applied magnetic field was reversed. The tilt di-
rection of the sample can be read from the line dividing the black and
white part of the spots. Since the black part is on the same side for
all the spots, the polarities of all the flux lines as seen in the region
aie the same.

Electron source

Magnetic

Superconductor

Lorentz
micrograph

Fig.9. Schematic for flux-line lat;tice observation.
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Fig.I0. A Lorentz micrograph of a two-dimensional array of ilux
lines in superconducting Nb film.

At low B, i.e., up to 30 - 50 Gauss, the flux lines are too scarce
to form a lattice, even in equilibrium. At, B = 100 Gauss where the
flux-line density is so high that it cannot be anything but a hexagonal
lattice, the flux-line configuration and movement are influenced by
structure defects.

5. CONCLUSION

Electron holography has opened up a new window fur direct and
real-time observation of the microscopic dynamics of individual super-
conducting flux lines such as in flux creep, pinning, etc, which up to
now has only been observed in macroscopic experiments. This tech-
nique will effectively be employed for elucidating fiudamentals and
practical application,; of superconductivity, especially in the field of'
high-Tc superconductors.
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SIGNS AND MIRACLES OF THE AHARONOV-BOHM EFFECT

AlfreLd S. Coldhaber
Institute for Theoretical Physics

State University of New York
Stony Brook, NY 11794-384O

ABSTRACT

Familiar aspects of electromagnetic intluences on the quantum propagation
of charged particles - and some not so familiar - conspire to support a view of the
Aharonov-Bohm effect as the essential and primary manifestation of gauge inter-
actions. In particular, the perturbative renormalization group scaling for this form
of the coupling lends appeal to the notion that, on scales where Lhe conventional
coupling c, becomes strong, there should be a 'universal pasta solution' for the vac-
uum structure of any gauge theory: The Nielsen-Olesen proposal of flux spaghetti
should apply not only for QCD at long distances as they argued, but just as well
for QED at short distances.

Signs of the AB3 effects

I hope to weave into a single tapestry a number of threads which together
illustrate the beauty as well as the power of the Aharonov-Bohm effect' as an orga-
nizing principle for gauge theories. Some of these notions are explicit, some perhaps
implicit in the existing literature. Much of the analyqis is contained in a recent paper
with Hsiang-Nan Li at Academia Sinica in Taiwan and Rajesh Parwani at Saclay,2

and I am most grateful to them for a stimulating, still progressing collaboration. Let
me begin by addressing a deceptively simple question, "What is the sign of the AB
effect?" I failed to grasp the point properly in my spoken presentation, but Jeeva
Anandan and Raymond Chiao helped me afterwards to see that the AB effect really is
two complementary effects: There is the shift of interference fringes which Aharonov
and Bohm pointed out in their original work,' and then there is the shift in angular
momentum eigenvalue for a particle in a ring encircling some magnetic flux.

Let us start by determining the sign of the second effect, the shift in angu-
lar momentum eigenvalue. This may be tone by classical physics using Ehrenfest's
theorem, which states that the change in expectation value of some observable is de-
termined by the classical equation of motion for that observable, with the appropriate
expectation value used to compute the classical force. Imagine that the magnetic flux
is turned on adiabatically, so that the particle remains in a definite eigenstate through-
out. By Faraday's law, if the flux is generated by a current of particles with the same
sign of charge as the test particle, then the angular momentum of the test particle
must decrease as the angular monmntum of the current particles increases. Thus, for
positive charge-flux product qF, with the flux coming out of the plane of motion as

27



28

viewed from above, the shift in angular momentum is

aM = -q4,/hc = - (1)

where F is the flux expressed in units of an AB quantum, hc/q. In terms of signs,
this means that the sign of the coherent-ring AB effect is negative.

Next we need to study the classic fringe-shift effect. To put the question
in terms of observables, let us ask: On which side of a flux, the right or the left,
should one introduce an attractive, velocity-increasing electrostatic potential in order
to compensate the AB phase? To answer this question by classical physics, consider
a charged particle traveling through a region of uniform magnetic field oriented up
with respect to the plane of motion. How could we arrange that the particle travels
in a straight line instead of being deflected to the right? We could compensate for
the Lorentz force by introducing an electric field in the plane, which by itself would
push the particle to the left. This means that the electrostatic potential decreases
from right to left, and thus is more negative on the left than on the right.

Since a uniform magnetic field may be described as a collection of adjacent
regions of magnetic flux, it follows that to compensate for the kB phase one must
place a suitable negative potential on the left side of the flux. We can see this directly:'
The pure uniform magnetic field gives a deflection to the tight. This is the same effect
which would result if the phase velocity were increased on the right, since that means
the number of wavelengths per unit distance increases, or the wavelength shortens,
which by standard refraction ideas gives deflection to the right. T'o compensate then
requires adding attraction on the left. Evidently this means that another observable,
the direction of shift in the interference pattern, also must be to the right, so that the
wave fringe motion of the AB effect is in the same direction as the chlssical deflection
by a uniform field. The conclusion is that with standard conventions the .;ifn of the
classic AB effect is positive.

To see why these two opposite signs not only are compatible !.iL are intrinsi-
cally connected, let us go to a special gauge, in which outside the region of magnetic
field the vector potential vanishes almost everywhere, but between the azimuthal an-
gles 0 = 2' - c and 0 = 0 + c there is a sharp jump in the phase of the wave function.
Since the angular momentum is reduced by the flux, it follows that in this gauge the
phase must have a decreasing contribution proportional to the flux as 4 increases
from 0 to 27r. Hence, the phase jump as 0 increases through 27r must be positive, to
restore the original value. What does this mean for interference shifts? If we imagine
the right and left parts of the diffracted wave arriving at a distant screen at an angle
€ > 0, then the part of the wave which goes round on the right passes through the
matching angle and experiences a positive phase jump. On the other hand, if we
look on the screen at an angle 0 < 2r then the wave which goes round on the left
experiences a negative phase jump. In either case, the effect of the flux is to produce
a positive relative phase shift of the right with respect to the left part, reproducing
the previous conclusion.
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Scattering on a thin flux string

Having learned the basic signs of the AB effect, we should look for miracles
beyond the miracle of the effect itself. The first such miracle is found already in
the original work.' Aharonov and Bohm observed that for a spinless charged particle
interacting with an infinitely thin string of noninteger flux the AB effect is self-
enforcing. In every partial wave, even the lowest, there is a centrifugal barrier which
assures that the wave function vanishes as a positive power of a/A, where a is the
radius of the flum string, and A is the De Broglie wavelength of the particle. Thus
a low-energy particle effectively is excluded from the region of magnetic field, and
this constitutes the necessary requirement that the sole obser able consequence of
the field ik the AB effect.

I cannot resist an aside about the special case of nonzero integer F. For any
integer F, there exists a partial wave which outside the flux has vanishing kinetic
angular momentum, and which approaches a constant at small radius. For nonzero F
this channel has a repulsive phase shift of order i/In(A/a), implying that a/A must be
exponentially small if the phase shift is to be negligible. Thus at finite a there can be a
significant correction to the limiting form valid for a = 0, and that correction violatesl
periodicity because it distinguishes between F = 0 and all other integer values. This
is not the last time that logarithmic effects will emerge in our consideration of flux
strings.

The miracle of the thin string limit does not end with self-enforcement of
the AB effect. If the ratio a/A may be neglected tOvr- it is possible to compute the
scattering amplitude analytically, and the result is remarkably simple. The amplitude
is

f ý sin(irF)c-i1 2/(27rik)'/ 2 sin(0/2) , (2)

where k is the wave number of the charged particle." I believe that for a suitable
choice of gauge convention the above expression can be used in the F interval [0, 11,
with periodicity used to define the expression outside that interval, at the cost of a
discontinuous derivative df/dF at integer values. The resulting cross section in any
case is periodic in F with period 1, as all observables must be under these conditions.

Enter helicity

The situation changes in a significant way when the charged particle is an elec-
tron with the Dirac gyromagnetic ratio 2. Now the attractive interaction between the
flux and the electron for parallel orientation of its magnetic moment allows penetra-
tion into the flux, and hence a sensitivity to more than the AB phase or the fractional
pait of F. What may bc surprising is that in the lnng wavelength limit the sensitivity
to F is only slightly enhanced: The observables depend not only on the fractional
part F- [F], but also on the sign F/I PFj. Thus, a new sign has entered the discussion,
the sign of the magnetic flux. If electrons are confined to a cylinder centered on the
flux, then cnergy levels in the partial wave with smallest kinetic angular momentum
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are lower for magnetic iconient parallel to the flux than antiparallel. It is hard to
decide which is more remarkable the breakdown of 1oriodicity in the dependence of
observables on the flux, or the extremely simple form of that breakdown, leading to
periodicity for nonnegative F, and separately for nonpositive F, but not for integer
shifts which cross F ý 0.

The effect on the scattering amplitude f of the magnetic moment coupling
may be understood from a symmetry so powerful that it is fairly called miraculous,
the conservation of helicity for an ideal Dirac electron in the presence of a pure
magnetostatic field. The minimum modification required to bring the amplitude for
scattering of spinless particles to a suitable form is the inclusion of a factor which
rotates the spin in such a way that helicity eigenstates with respect to the initial beam
direction are converted to cigenstates with respect to the scattered beam direction.'
This factor is a spin rotation matrix c io0/2', which however is not single-valued in 0.
Since we are working in a gauge where the vector potential is nonsingular, the wive
function and hence the scattering amplitude must be single-valued, and therefore
we need to include a further factor c"/ 2 . The choice of sign for the exponcit in
this factor is directly related to observable quantities, the (opposite) signs of the
phase shifts in the two partial waves with magnitude of kinetic angular momentum
J3 = L3 + s3 smaller than 1/2. It turns out that the phase shift for Dirac magnetic
moment parallel to the flux F' is attractive, while for antiparallel it is repulsive. The
scattering amplitude indeed is sensitive to the sign of the flux, and there are observable
consequelces, such as the Zeemnan splittings mentioned above, and the propcrtiuci of
specially designed junctions.

7 '72

The case of nonzero integer F is altered a bit from the situation described
earlier for spinless charged particles. 'FhIe wave with orbital kinetic angular rnoiuen-
tuni zero and Dirac momuent antiparallel to F again experiences a repulsive plhase
shift vanishing as I /In(A/a), but there is no appreciable phave shift for the wave with
Dirac moment parallel.

All the results of helicity conservation follow from the assumption that the
electron experiences only magnetic forces. In many laboratory exarnmples, this is not a
good assumption, since th,' materials in counducting coils, and shields for those coils,
exert powerful nonniagnetic forces on any incident particle. This difficulty may 1b
overcome by making usc of a purely magnetic field, as in the region just at the cnd
of a tube containing a supercon(ductor quantum of flux, P" - Iw/2e.7 Another way to
make the effective field purely magnetic is to deal only with propiagation of clectron
qusLsiparticles through a superconductive medium, in which case the interacti(,,i is
purely magnetic (and even locally a pure gauge effect) unless the quasiparticle actually
penetrates a vortex of magnetic flux. In the interior (d the vortex there might be an
effective scalar potential influencing the motion. H-owever, as long as the resulting
forces are weak on the scale determined by the vortex radius they have negligible
influence on long-wavelength scattering, so that helicity conservation continues to be
a good approximation in this regime, even though no longer exact.

Such is the situation expected fir cosmic strinogM. rhe ordinary vacuum plays
the role of a superconducting ujedium, ind for light fermnions with effective mass com-
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ing from a Higgs coupling the change or effective mass in the interior of the string has
negligible influence on the scattering. Thus, for cosmoic strings one expects the helicity
conserving boundary conditions, only changing the si,,n of one phase shift from that
for pure AB scattering, to be the uniquely selected d, ::cription for the effect on light,
low-energy fermions of such strings.

Induction of vacuum currents

A further dynamical consequence of sensitivity to the sign of F may be seen if
we examine (for spinor QED) vacuum electric currents induced by F. These currents
always work to generate a magnetic field opposed to F, but otherwise periodic for
nonnegative or nonpositive F.'9" `-` In the case of scalar electrodynamics, the induced
currents work to bring the flux to the nearest integer value, and so are insensitive
to the sign and completely periodic in F, 11s,2 A case for which one may guess the
behavior, though it is not yet computed to my knowledge, is that of vector electro-
dynamics. Here perturbation theory, as well as studies of behavior of the vacuum in
the presence of a uniform magnetic field, lead to the expectation that the induced
currents will enhance rather than oppose the applied flUX,1

2 "13 "14 in other words, that
conventional screening will be replaced by antiscreening. In all cases, one expects the
induced flux to vanish when F is exactly an integer, since then the effective bound-
ary conditions on any charged-particle wave function at the location of the infinitely
thin flux are exactly the same as if no flux were present."5 The antiscreening may be
understood qualitatively because the attractive magnetic moment interaction reduces
the effective mass of a spinor or vector particle, For spinors, the vacuum is described
as a filled negative-energy sea, so that a reduction in effective mass actually raises tile
vacuum energy, while for vectors the reduction in single-particle energies implies also
a reduction in the energies associated with the zero-point motion of the oscillator for
each single-particle state , N, M2 and hence a reduction in vacuum energy,

In the region close enough to the flux string that the radius r is negligible
compared to the Compton wavelength of the charged particle one may neglect time
particle mass, and then use dimensional anilysis to see that the azimuthal current
density must be proportional to r- 3 . This implies a magnetic field proportional to r- 2,
contributing a magnetic flux betwet.n shells of radii r and r' proportional to In(r'/r).
Thus, as a test charge approaches the string, the ;pparent flux instead of remaining
constant exhibits an anomalous dimension, familir from• the renornialization group
treatment of electric couplings, However, still within time perturbative context, there
is a big difference. The relevant beta function (to all orders in F, but lowest order in
the gauge coupling a) vanishes for integer F. Since the AB coupling does not diverge,
even though it does get strong enough to make perturbation theory suspect, it may
be a more reliable indicator of the behavior in the large a regime tham is the naively
divergent a it.-lC.



32

Dynamical strings of flux?

We may say with considerable assurance that in the strong coupling (large
a) domain there will be large (order anity) fluxes present as vacuum fluctuations.
Further, since at least in this abelian gauge theory flux is conserved, these fluxes
in the vacuum plausibly could be excited to form observable moving strings of flux.
However, if the net flux in such a string were an AB quantum (Here 'net flux' includes
the accompanying vacuum-current induced flux), then low energy electrons would be
insensitive to its presence, since if the interior is not penetrated an AB quantum is
invisible. If net flux quanta other than zero were present in the vacuum fluctuations,
the vacuum would exhibit 'spontaneous electric charge quantization', in the sense that
"a particle with a fraction of an electron charge would find its effective mass raised to
"a value on the scale where the coupling becomes strong.

The picture of a vacuum containing magnetic flux strings with diameter char-
acterized by the strong coupling scale has been proposed before, by Nielsen and
Olesen,' 6 who used an intricate pattern of deduction to argue for the necessity ot
such a flux spaghetti in the nonabelian theory QCD. From the renormalization group
point of view adopted here their argument seems quite natural. In QCD one may
characterize flux in a gauge invariant way by obtaining the Wilson loop function, the
trace of the gauge transformation associated with a particular loop in space. If that
gauge transformation is a multiple of the unit operator, then the suitably normalized
trace has possible values , e.27i/3 , e-2wi/3. Since gluons are insensitive to the presence
of any such flux quantum, one may wonder if the full beta function might vanish at
such values, leading to an enhanced likelihood of finding quantized fluxes, and there-
fore density enhancements in the complex plane near the above-mentioned values (for
which the group invariant density actually vanishes).

If we now introduce quarks, which lie in the fundamental representation of
SU(3), then the beta function will vanish for Wilson loop trace 1. However, for each
of the other two unit-matrix values, which would give a nontrivial Aharonov-Bohm
effect on the quarks, their weaker and nonvanishing beta function will oppose the
contribution from gluons, so that one expects the enhancements in concentration to
be near but not at these values. Nevertheless, such a pattern would imply strong,
locally correlated, color magnetic fields. These could well be a (or the!) critical factor
generating color electric confinement.

Consistency of QED?

At this point let us pause and take stock. We have been treading familiar
ground in the sense that it has long been known that couplings in perturbative field
theorie general.y have a nomldous dimensions which give rise to increasingly strong
interactions as length scales get larger (QCD) or smaller (QED). If the coupling
studied is an Aharonov-Bolihn coupling, then at least in perturbation theory it is
not divergent, but only approaches unit strength, This invites us to consider the
AB coupling as a more reliable indicator of the trite dynamics in the strong-coupling
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regime than the perturbatively divergent ordinary electric coupling. However, all of
this assumes that QED, in particular, is a consistent theory. What is known about
that?

Two different approaches give different answers. On the one hand, we know
that a theory extrapolated to a new domain may fail either because it lacks essential
physics, as Newton's mechanics fails for relativistic velocities, or because the theory is
not consistent, with the inconsistency becoming dramatic in the new domain. There
is strong circumstantial evidence that Ao4 theory is consistent only for A = 0. In
perturbation theory there is a divergence as distance scales grow smaller, just as in
QED. This suggests that QED may be viewed as a 'cousin' theory with the same
genetic disease. However, the pathology in Ao' is such a borderline effect that it
is easy to imagine a cure resulting from very slight changes. On the other side of
this question, we have even stronger circumstantial evidence that QCD is consistent.
Thus it becomes a question of which cousin theory is closer in its essence to QED,
,o' or QCD. If we choose the latter, then we need ask only the more limited but
still quite challenging question, "What are the dynamics of QED on short distance
scales?" For that, the well-behaved AB coupling is an appealing guide.

Let us explore the consequences of assuming that tubes of flux become dynun-
ical degrees of freedom on the scale where the coupling is strong. Such a tube would
have transverse dimensions in its rest frame, arid also string tension, determined by
the strong-coupling scale, A charged particle localized on this scale would receive ar-
bitrarily large contributions to its effective mass from virtual flux strings of arbitrary
velocity passing by. On the other hand, a spread-out particle wave function would be
insensitive to these strings with their quantized flux. Thuns the effect of this assumed
vacuum structure would be to make sufficiently localized particles so massive that
there would be negligible contributions from large virtual masses in loop diagrams
for vacuum polarization.

Now we may consider whether there is a mechanism to generate the assumed
flux tubes. Suppose a localized pair of electron and positron appear. If they overlap
spatially, then they have negligible Coulomb energy. If further they have parallel
magnetic moments then the energy is much lower than for antiparallel moments,
so that the fluctuation should last longer. tFurthermore, reinforcing fluctuations at
neighboring locations are favored for the same reason. Thus correlated flux fluctua-
tions corresponding to virtual flux strings seen inevitable. There is an extra subtlety
in this argument. The notion of a magnetic moment is only simple in a nonrelativis-
tic context, but that is immediately applicable here since it is being supposed that
the electron becomes massive at the strong interaction scale. Thus the hypothesis
that QED is consistent and that small diameter flux strings populate space leads to
a picture of the %,,cuum which indeed hangs together, with the flux strings giving
mass to the electrons and so halting the divergence of the ordinary electric coupling
-t small distances, and the massive, strongly-coupled electrons easily generating the
flux strings.

Having speculated this far, let us go a little farther. For pure QED with one
species of electron the scale factor for going from the electron Compton wavelength
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Ae to the strong coupling region is e- 3 /2a . 10-3o0. However, in the standard model,
with U(l) of QED replaced by U(1)R, and three generations of quarks and leptons
included, the number in the exponent is reduced by an order of magnitude, and comes
to the vicinity of the value appropriate for the ratio of the Planck length to A,. Thus
relatively minor modifications of the standard model could lead to flux strings ap-
pealing on the Planck scale. Such a circumstance would engender a temptation to
identify the flux strings with the strings of string theory, which then could be treated
as derived objects. If known light particles were derived from string theory, this could
become the ultimate bootstrap!

Coda

We have arrived in the land of pure fantasy, but the fact that such a fantasy
even could be conceived is a testament to the reach and scope of the AB effect, which
at least perhaps might be not only the essence of gauge interactions but also the root
of the whole structure of the Universe. This makes it quite fitting to close with a few
personal remarks about the discoverers of the effect.

I met Yakir Aharonov a while ago, and by now have had a number of chances
to experience his unique, adrenalin-raising approach to science. As with Niels Bohr's
lucky horseshoe, it is not necessary to believe Yakir's ideas in order to benefit from
them. Many others here can attest that even when disagreeing with him one finds he
has exposed deep aspects of physics whose further study is bound to be fruitful. fie
comes closer than anyone I know to making the Socratic method a workable tool for
learning about Nature. It is no surprise that this meeting in his honor should exhibit
the same quality of excitement and discovery which we have learned to associate with
Yakir.

I looked forward to this conference as my first opportunity to meet David
Bohm, whom I had admired since college. I took a course on quantum mechanics
in which the lecturing did not match my learning style very well, and his book was
my salvation. For reading by oneself the high ratio of words to equations proved
quite congenial, leaving me at the end feeling that I had grown up knowing quantum
mechanics. That foundation has served me well ever since, and I am most grateful
for it. Its author, by showing much more courage than I in probing and questioning
the structure of quantum mechanics which lie understood and explained so well, only
increased my admiration for him as a person perpetually restless in the search for
truth.

The paper of Aharonov and Bohm may have been the first scientific article I
read on my own rather than for a class assignment. I remember being impressed by the
striking simplicity of the argument but a little cautious because of the audacity of the
language. When Furry and Ramseylr wrote a paper in response, the rumor I got from
fellow students was that they had put Aharonov and Bohin in their place, demolishing
the idea. Of course, when 1 read the paper it became clear that wasn't so. Instead
they showed that the AB effect is necessary for the consistency of quantum mechanics,
in particular for the complementarity between observation of wave interference and
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detection of particle trajectories. The whole episode was a wonderful introduction to
science at the frontier. and shaped Ihe work of many people, Not least significant is

9 the fact that the AB phase was contained in a paper published ten years before, by
"Ehrenberg and Siday,'8 who seemed to take the effect as a matter of course and thus
failed to focus on it the attention which it so richly deserves and has so richly repaid
since 1959.

This work was supported in part by the National Science Foundation under
Grant PRY 92-11367.
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AHARONOV EFFECTS FOR TWO SLITS AND SEPARATED OSCILLATORY
FIELDS INTERFERENCES
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ABSTRACT

The implications of complementarity on two path interferences
and separated oscillatory field resonances are discussed. Furry
and Ramsey have shown that an apparatus to determine the
electron path introduces uncertainties in the scaler and vector
potentials that disturb the phase of the electron wave function so
much through the Aharonov-Bohm effects that the interference
fringes disappear. A similar result is derived for the neutron,
but with the phase uncertainties coming from the magnetic
moment's motion through an electric field discussed by
Anandar,. Aharonov and Casher. The separated oscillatory field
resonance method can be interpreted as an interference between
two different paths in spin space. The same analysis as for the
neutron two pith bitprferences shows that the separated

"•,..r• fiya, resonance disappears when the orientation of
tne neutron spin is observed between the two oscillatory field
regions. An interesting difference between the separated paths
and separated oscillatory fields experiments is that the latter may
be interpreted classically. An equal superposition of the two
orientation states along one axis corresponds to an eigenstate
relative to an orthogonal axis so the separated oscillatory field
resonances can be interpreted classically whereas this is not
possible with the two path interferences.

1. Introduction

It is a pleasure to speak at this conference honoring Y. Aharnnov,
whose stimulating papers have added so much to our understanding of
quantum mechanics but I deeply miss David Bohm.
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I remember well the waves of surprise and disbelief that circulated
throughout much of the physics community on the 1959 publication of the
Aharonov-Bohm (AB) paperI that pointed out the possibility of observable
effects of electromagnetic potentials on charged particles unexposed to electric
or magnetic fields. Wendell Furry and I at that time were astonished but
willing to try to understand the effects from different points of view. As a
result we published one of the first papers supporting the' AB analysis 2. We
pointed out that the (AB) effects for scalar and vector potentials were essential
to preserve the consistency of quantum mechanics and the principle of
complementarity. We showed that, without these effects of the scalar and
vector electromagnetic potentials, it would be possible to observe two slit
interference patterns with charged particles while at the same time detecting
through which slit the particle went. Such an observation is inconsi ;tent
with the principle of complementarity applied to a two slits interference
experiment 2. We showed that the AB effects would make the interference
pattern disappear if the path detection sensitivity were sufficient to determine
through which slit the charged particle went.

Since our early paper convinced many scientists of the validity of the
AB observations, the organizers of this conference urged me to review that
paper here. However, I was reluctant to repeat a 32 year old paper in a field in
which I have done no recent work. But, I then realized I could also analyze
two different problems from a similar point of view, so i agreed both to
review our old paper and to discuss the new subjects, even though the three
different reports produce a cumbersome collective title. The two new
analyses depend on the phase shifts of a neutral particle with a magnetic
moment moving through an electric field as discussed by Anandan 3,
Aharonov 4, and Casher 4 (AAC). The first of the three reports- reviews our
old work under the title Comple-nentarity and Two Paths Electron
Interfereaces . The second is Complementarity and Two Paths Neutron
Interferences and the third is Complementarity and Separated Oscillatory
Fields Resonances.

2. Complementarihy and Two Paths Electron Interferences

The AB paper1 considered the effects of both the scalar and the vector
electromagnetic potentials so Furry2 and I did likewise. In the case of the
scalar potential we considered the idealized apparatus shown in Figurc 1 to
see if it could be used to detect through which slit the electron passed while
still observing the interference patter' . The detection of the slit traversed by
the electron is made by determining which way the test body of charge q is
accelerated before the electron emerges from the pipe. The test body is
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between two condenser plates separated by a distance I as in Figure 1. It is
held fixed half way between them ( x = I / 2 ) until the waves are inside the
tube, and is brought back to this position before the waves emerge; thus it
produces no field between the pipes at any time when the field could act on

I diifont

Figure 1. Electrostatic effects.

the particle. The test body is free to move during a time interval T when the
waves are certainly inside the pipes, and by determining the direction in
which the test body is accelerated during the time T we can find out which
tube contains the particle.

The potential difference produced by the presence of the electron in
one tube or the other is V1 = ± e. /( 2 C ), where C is the total capacity of the
condenser and attached pipes. The magnitude of the field strength is thus 2

IE31 =e/(21C). (1)
rhe force on the test body is q E. If its direction is to be determined, it must
produce a change of the momentum of the test body that is larger than the
uncertainty of that momentum Ap. To be relatively certain of the direction
we take the imparted momentum to

q IEIT >2Ap. (2)
Displacement of a charge q from a central position at x = I / 2 produces a
potential difference 2

V = ( q /Qc (x - I / 2) /1l (3)
and the uncertainty of the potential difference is

AV = (q / lC)Ax (4)
Substituting Eq. (1) into (2) -nd multiplying by Eq. (4), we have

qeTAVI (21C) >2(q/lC)ApAx , 2(q/IC)h/ (4it) (5)
Therefore,

eTAV>2h/ (2 x). (6)
By ABl, if alternative electron paths involve the electron being in
electrostatically shielded regions with a potential difference V for a time T the
wave functions will develop a difference of phase of e V T / (h / 2 n).

p
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Therefore the uncertainty in the phase differences between the two paths
caused the test body is

AO=eTAV/(h/ 27) >2 (7)
A phase shift uncertainty of 2 radians will obliterate the fringes, so the AB
effect of the electrostatic potential assures the consistency of quantum
mechanics by making it impossible to obtain interference fringes when the
electron path is known.

When I first reported on our work at scientific meetings in 1959, I
introduced into the scientific literature a Charles Addains cartoon which has
since been used extensively. This cartoon shown in Figure 2 is a great

Figure 2. Charles Addams cartoon.

illustration of a fundamental difference between classical and quantum
mechanics. In a classical world the cartoon is a joke since a classical object can
not possibly pass through two separated regions at the same time- On the
other hand in a quantum world the wave function of an electron can
simultaTeiously experience the potentials at two separate regions of space.

With the AB vector potential effect, the analysis is similar but a coil
and an infinitely long infinitely permeable rod R are used for the path
detection as shown in Figure 3. The coils and plates are assumed to have no
resistance. With these assumptions there is no stray flux outside the rod and
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hence no field in the regions traversed by the electrons. Furthermore the
current induced in the search coil is then just that required to prevent any

change in the flux (D. Passage of the particle through either slit and on to the

I
~ diltani --.

s 1 ~ srant

, 
C

Figure 3. Magnetic effects.

screen is tantamount to flow of the charge e through one half turn since a trip
out and syrnmetrically back on the other side would be equivalent to a full
turn. Therefore, with N coil turns, the charge delivered to C is 2

Q=z±e/ 2N (8)

The characteristic time of the circuit2

T=. (LC)1/ 21c (9)
is very long compared with the time of passage of the wave packet through
the apparatus. Thus we can have the advantage, as compared to the scalar
potential analysis, of ample time for the determination of the sign of Q.

The circuit has two canonically conjugate variables, the charge Q and

the flux linkage N 0, which appear in the Hamiltonian for the equivalent
harmonic oscillator,

H =Q 2 / 2C +(N 0) 2 /2L, (10)
and satisfy the uncertainty relation

AQ N A > hc 14. (1)
If we are to determine the sign of Q reliably, we must have

IQ I >2AQ. (12)
From this and Eqs. (8) and (11) we obtain

eAO >2hcl2 r, (13)
AB point out that there is a resultant phase difference

S= (2xefhc)cD (14)
between the waves that have passed R on one side or the other.
Consequently from Eq. (13) the spread in 0 is given by

d A (2 r e / h c) AO >2 (15)
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3. Cornplementarity and Two Paths Neutron Interferences

The above AB analysis applies only to charged particles. However two
slit interference patterns for many years have been obtained with neutrons
and more recently with neutral atoms. One can attempt to to detect through
which slit a polarized neutron went while observing the interference pattern.
Various methods can be chosen to detect the neutron path and for each there
is a corresponding uncertainty relation that destroys the interference pattern.
For example, an apparatus similar to that shown in Figure 3 could be used but
with neutrons polarized perpendicular to the pal Ž2r and with neutrons on
one possible path having to pass through the infinitely permeable rod. The
sign of the charge Q delivered could then be observed as in the vector
potential case discussed above. However, as in that discussioxv the
uncertainty in the magnetic field destroys the interference pattern when the
apparatus is sufficiently sensitive to determine the path.

A different method of path detection uses the fact that a magnetic
dipole of strength JIm moving with velocity v appears in a stationary
reference frame to have an electric dipole moment gE given by

ALE =(V /C)xjuM, (16)

so the passage of the neutron through a condenser could be detected by
measuring the induced potential. The same Figure I with a different
interpretation can be used to describe thi proposed experiment. Instead of the
four dark horizontal lines being interpreted as two pipes, they now represent
plates of two parallel plate condensers with the inner two plates connected
together. The neutrons are polarized perpendicular to the paper so the sign of
the potential induced by a passing neutron depends on which slit is traversed.
From Eq. (3) applied to each pole of an electric dipole, it can be seen that the
potential VI induced during the passage of an electric dipole through one
condenser or the other is

V1 =±ME / (C d) (17)
where d is the separation of the plates in the condenser. The magnitude of
the field E on the test charge is then

I E I= VI /I =,'E / (Cdi) = v pmI/cCdI (18)
To be relatively certain of the direction q moves as in the ABl electrostatic
discussion, we must have

2 Ap <p =qI E IT =qvpm T /c C dI .qum L c CdI1 (19)
whef-e 1L Tv i's the length of the condenser.

But the detection mechanism in Figure 1, by Eqs. (4) and (19) will have
an uncertainty in voltage of
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AV=qAxIlC >qh/47rlCAp >hdc/2 r ILM L (20)

But by AAC3,4 and Cimmino et a15 the phase difference between the two sides
is

OAAC=(2)r/h) J p .dr = 4 irpM A/c (h/2 r)

=-2pMLV/ dc(h/2t) (21)

where A is the lineal charge density which by the Gauss theorem is related to
the voltage across the condenser by

A =2VL/4i4d. (22)
The uncertainty in the phase by Eq. (20) then is

AOAAC= 2IMLMAV/ dc(h/21r)>2. (23)
So the interference disappears just as the path of the neutron is detecled.

4. Complementarity and Separated Oscillatory Fields Resonances

For the resonance methods of separated or successive oscillatory
fields 6.7, the transition probabilities for a two level system can be exactly
calculated. Although the resulting formulae are useful in determining
spectral line shapes, they obscure the origins of the observed sharp peaks as
coming from an interference between two possible paths in spin space.
However, this origin can be clarified by deriving the transition formula in anl
alternative, but equivalent form. For simplicity the same notation will be
used as in the original papers6 ,7 and consideration will will be restricted to the

special limiting case where the durations r of the two pulses are negligibly
small except when multiplying the transition inducing amplitude b, which is

assumed so large that by is finite.

With these restrictions, the exact expressions',7 for the probability

amplitudes after the interaction of durali( n r in terms of those at times ti
just before the interaction simplify to

Cpt 1 + -r ) =cos ( b ) C(t1 () - i sin (br) exp (io ti ) C,( ti) (24)

Cq(ti + r ) -i sin (b1;) xp (-i Ht j ) Cp( t + cas ( b. ) Cq(t)
I lowever , following a finite period T with b 0, the probability amplitudes
are related as follows:

Cp(ti+T) exp(-i27rWpT/h) C1 ,(t t) (25)

Cq( 0 + T)= I exp(-i2 irWqT/h) 0 Cq( ti .
By successively applying these relations it is easily seen lor Cp (0) = I and
Cq(O) = 0 that

Cq( ' + 2 r) -i sin (bW) cos ( br ) I exp - i (wo + 2 ;r Wp / I) T
+exp - i (2 r Wq / h) T I (26)
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The modulus squared of Equation (26) gives for the transition probability
I Cq(T +2 r) 12 =4sin2(b0) co&2 (br) cos 2 ao -wo)T,2 (27)

which is in agreement with the usual expression 4 ,5 when the above
restrictions are applied.

In Eq. (26) the first term corresponds to the probability amplitude for

passing through the intermediate region in the original state p followed by a

transition in the second oscillatory field. The extra factor exp - i (w0) T
arises from the phase of the oscillatory field at the time T when the transition
occurs. The second term corresponds to the probability amplitude of a
transition to state q in the first transition region with passage through the
intermediate region in state q. From the form of Eq. (26), it is apparent that
the factor cos 2 (o - w o) comes from the cross terms between the probability
amplitudes for the two possible spin orientation paths between the two
oscillatory field regions.

In the ease of the separated oscillatory field method, the analogue to
determining through which slit the particle passes is determining the spin
orientation state of the particle during the interval between the two coherent
pulses. In the case of neutrons this might be done by allowing the beam to
pass between two plates of a condenser and determining the orientation state
from the sign of the induced potential as in the previous discussion. The
analysis is the same as for the two slit case and the sharp resonances disappear
through the AAC effect just as the sensitivity becomes sufficient to detect the
orientation, as required by complementarity. Englert, Walther and Scully8

have recently and independently made analogous observations using a
micromaser with two field optical fringes.

Despite the similarities, there are fundamental differences between the
two slits and the separated oscillatory fields experiments with neutrons. The
orientation state of the neutron is determined by a vector in three
dimensions and an equal superposition of the m -- + 1/2 and -1/ s tates
corresponds to an orientation eigenstate along an axis perpendicular to the
original axis. As a result the sharp resonance peaks can be interpreted
classically as the spin being flipped n/2 radians in the first oscillatory field and
being allowed to precess before the next one. If the precession and oscillator
frequencies are the same, the second osciallating field will do the same thing
as the first, producing a maximum reorientation. If on the other hand the
frequencies are slightly different so that the neutron spin precesses an extra X
radians, the spin will be flipped back to its original position corresponding to
a minimum transition probability, thus providing narrow resonance even
with a classical interpretation. On the other hand, such a clas-;ical
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interpretation of two slit interferences is not possible since there is no
reasonable classical interpretation for the probability amplitude
corresponding to the superposition of two different paths in space.
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I. Introduction

It is a pleasure to speak at Yakir's birthday celebration, especially on the sub-
ject of matter wave interferometers which his work has been intimately related to for
so many years. And the fact that we will be able to give the first report on experi-
nients in which atoms are sent on both sides of a metal foil and then recombined adds
even more enjoyment. But let mne begin this talk from the atolnic physics point of
view.

The field of atomic, molecular, and optical physics has been moving with in-
creasing velocity in recent years, and no sublield in this area is currently developing
flaster than atom optics and atomi interferometers (both of which we have recently re-
viewed. 1.2) About a dozen experiments that demonstrate atom wave interference or
atomi intefferomneters have been performed during the last live years;3 11 results
which parallel demonstrations of optical devices that spanned most of the nineteenth
century, Even without further developments in atomn optics, there now exist enough
useful elements to make a variety of atomi interference devices and interferonieters.
The burst of activity in this area in 1991 was reported in most of the widely circulated
scientific maga ines, 12 as well as in recent review articles. 2 't 3"14 Since these reviews,
two new groups have performed melated demonstration experiments. 1,.15 Mon: im-
porlantly, measurements are now being made using these devices. At this rate, we
anticipate that many applications of atom interferometcrs to probl, ms of scientific
and technical importance analogous to those of the last hundred yeams in optics will he
imade in the remainder of the 1990's. (This is not to say that we're smaller, just that
we have the theoretical understanding to chart a surer course, and much commercially
available technology with which to pursue it rapidly.) Since our judgement is that we
have now entered a period in which the most important advances involving atomu in-
lerferometers will be new applications rather than new interferomtners, the remainder
ol this presentation will concentrate on the four areas in which atomi interferomncters
appear likely to have significant scientific and technical applications. Unfortunately
for those who have read our recent review, 2 there is little new to reporm in the couple
of Inoths since that was written.

2. Atom Interferomneter Applications

2. 1 Atomic and Molecular Properties

We are pleased to report at this conference the fiust mecasuieennts made with a
separated beam atomn interferomieter. The key point here is that separated beant atom
interferometers present the opportunity to subict part of the atomr wave to an interac-

4!,
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tion which causes a phase shift and then to measure this phase shift by interference
with the unshifted part of thle atom wave in the same state, An obvious application is
the precision measurement of thle (ground state) polarizahility of thle atoms (or
molecules) in the interferometer, by subjecting one part of thle atorn wave to a
uniform electric field. We discuss such an experiment currently giving nice results in
our- laboratory. We note that this is intrinsically a higher precision approach than
measuring the deflection in a field gradient, whether this is measured by
conventional 16 or interference techniques. 17 We also note that polarizability
diffierences between two states of an atom have long been measured using op~tical
resonance techniques, and can also be measured in interferomimeters of the Chebotaycv
type even though the two legs of the interferomleter are not spatially resolved. 15,1 8

No/A, O.b~, ' O.G ,

lQnk-o -Ppm fI1

?._, LWp -n -h ýklt.
D.4Wd of kLoto ~k-V

I igire 1: A schematic, not to sc~ale, of our atom interfeorometer Vtie 10 gim copper foil is between the
iwo arms11 oIthe interfcroincter (thick Ilines arc atomi hcaniia). nTe optical interferunicter (thin lines are
laser henams) measures the relative position ot the 2M)1 nin perioti atoin gratings (-which ate indicated
by vertical diashed lines).

Our atoin interkeronicetr has beem described in, 3 and is depicted in Fig. 1. It
uses three equally spaced trntrtmllsisstn gratings, at Standlard interferontIkmr desim'n.
with about 2/3 of a meter spacing between thle gratings. 'rliis configuration produces a
robust white fringe. ") We now use three 0.2 micron periodl nanofabricated 21)

diffraction gratings which secparate thle cenrters of thle interfering beanms by 55 p. We
collimated the sodium atom beanm with 20 p1 slits so the edges of tile two interfering
beams do not overlap. The atoms had a detiroglie wavelength of l6pin. The FWHM
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Figure 2: Interference Pattern froin 40 seconds Of data (-I second per point). VWe citUst is 25%

and the phase uncertainty is 17 inilliradions. 1)etector noise background of 200 counts per second has

been subtracted.

of the velocity distribution of the beami was 11%, which' determined the longitudinal

coherence length (1.6 X). The fringe amplitusde was 820 cps, which would allow us to

determine the phase to 15 milliradiatis in 1 mainute (Fig. 2).

An interaction regions consisting of a stretched metal foil positioned

symnsetrically between two side electrodes, each spaced 2 inin fromi this septum, was

inserted in the interferometer so that the atoms wave in the two sides of the

interteronleter passes on opposite sides of the foil. The septum was 10 ens long and

10 microns thick, but the shadow it cast on the dletector was typically 30 It wide due

to slight deviations of the stretched foil from perfect flatness. Because we have a

conducting physical barrier between the separated beams, we can apply different, but

uniforms, electric and magnetic fields to the portions of the atoni wave on each side of

the interferometer,

U)

T0 50

-400 0 400
position in nm

11igure 3: Stark phsase shifts for voltages applied to the right (open circles) and the left (tilted circles)

side of the interaction regioni. l'hase shift per applied electric field squared in (voltlcii)2 is

1 .220(7))x 10-' for tlic left side andt 1.224(7) xIT05 for the right side. This incasuriemsstl

detetroines the dc polari7.ahility of sodiuns with 0.4% statistical uncertainty.
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If an electric field is put on one side of the interaction region the DC Stark shift
of the atom wave on that side will change the phase of the interference pattern, The
Stark shift is

Vs' =- (x F2/2,

where a is the electric polarizability and c is the applied electric field. The Stark shift
acts as a slight depression in the potential energy, V, as the atom wave passes through
the electric field. This increases its spatial frequency (since the deBroglie wave
number is k = [ 2m(E - V)]112/11 and E is conserved), resulting in an increased phase
accumulation relative to the wave that passes on the side of the septum with no field.
Since Vs is eight orders of magnitude smaller than E, the square root can be expanded
with the result that the differential phase shift is O= atl E2/2v 1l= Vjt/h where I is the
length of the interaction region, v is the velocity of the atoms, and t is the transit time,
We found that the measured phase shift was quadratic with the applied field within
error, as expected, allowing us to determine the polarizability of the ground state. We
found that putting the field on opposite sides of the septum gave the same absolute
value of the phase shift, giving a statistical error of .4% in - 20 minutes. We arc
currently investigating several systemctic errors (the largest due to variation of the
phase shift with septum poasition) which currently limit our deternination of an
absolute value of the polarizability to - 1%. Figure 3 shows the phase shifts vs.
applied electric field.

0l) A A ̂
------------------- -

ýV

Figure 4: Contrast revivals front constructive rephasing of the independent interference patterns oSf the
X different magnetic sub-states of sodium. These patterns are dephased by a current flnwing down th:e
sefpum which aiins tih iagnitude of the uniform nmgnetic field on the two sides.

We have also observed the periodic rephasing of the independent interference
patterns of the different Zeeman substates of the ground state as a differential
magnetic field is applied to opposite sides of the septum. To observe this, we first
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applied a uniform magnetic field along the beam axis to determine the quantization
direction. By running a current down the metal septum, perpendicular to the plane of
the interferometer, we increased the field magnitude on one side of the interaction
region and decreased it (n the other. This gave a differential Zeeman energy, and
therefore phase, for the two pathfi around the foil. The phase shift is proportional to
the current passing through the septum and the projection of the magnetic moment
along the quantization axis. Siri'e our beam is unpolarized, the observed interference
pattern is a sum of interference patterns for each of the eight sodium ground states.
Since the g-factors of the F = 1 and F = 2 hyperfine levels live equal magnituck (but
opposite sign), there are only three different magnitudes of piojected ma ..:tic
moment. At low fields thebe are proportional to 0, 1/2, and 1 tiaes a Bohr magin-ton.
Consequently the independent interference patterns periodically rephase
constructively to produce a high contrast interference pattern with the same phase as
the pattern at zero field. This is shown in Figure 4. The first revival of contrast is the
point where the phase shifts are 4n for the ImiI = 2 states, 2z for the 1rnFI = 1 states,
and 0 fur the mn = 0 states. In this experiment, therefore, the informative variable is
the cotrast (not phase) vs. magnetic field.

The contrast versus differential magnetic field has the same shape as the
amplitude versus positior for a five slit diffraction grating whose central three Jits
are twice as wide as the -xtremal slits. (To make this analogy more precise, we would
have to illuminat-. the grating with light of the appropriate spectral width.) Fig. 4 also
contains a fit to the data which correctly models the effects of our finite velocity
Sdiribution and misalignment of the uniform magnetic field that determines the
quantization axis. Not only the relative positions of the contrast maxima, but also
their width and the degradation of contrast of subsequent rephasings due to the finite
coherence length is well accounted for by the model. The real significance of this
rephasing experiment is that (since the value of the Bohr magneton is accurately
known) one of the fit parameters is the average velocity of the atoms that successfully
i.iake it through the interaction regin and contribute to the interference pattern. This
can be exploited to eliminate systematic effects arising from processes which cause
this final average velocity to differ from the average velocity of the atoms in the beam
upstream of the interferometer.

For large currents down the foil, the average over the velocity distribution of
the atom beam reduces the contrast in the interference pattern of all 3toms except
those in th.- two mp = 0 states, which experience no Zeeman phase shift. 'this will
result iii a contrast one-fourth of that observed for no current. At this point, any small
phase shifts observed from addit;,,nal interactions would be those of only the lF--
states. By applying a large Stf hase shift to all of the substates, the contrast of
these mF= 0 states could be reut, I to nearly zero while another polarization state
was shifted back into coherence with itself. This would allow experiments to be
performed on a polarized beam without the difficulty of optical pumping, (but without
the gain in intensity which such optical pumping should bring).

What happens if the atom wave on one side of the septum passes through a gas
C) not present on the other side'? From the perspective of wave optics, the passage of a
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wave through a medium is described in terms of an index of refraction whose real
part is proportional to the phase shift of the wave and whose imaginary part is
proportional to the absorption of the wave. For an atom wave passing through a
gaseois medium, absorption will be proportional to the well understood total
scattering cross section, which is determined by the imaginary part of the scattering
amplitude at zero angle. The phase shift will be proportional to the real part of the
scattering amplitude at zero angle. Taken together, the absorption and phase shift
therefore determine the phase and amplitude of the scattering amplitude. In low
energy collisions this means that both the magnitude and sign of the scattering length
can be determined, an important advance since knowledge of the sign, hitherto not
measurable, is critical to predicting low temperature collective behavior.

2.2 Inertial Effects

Atom interferometers are sensitive to inertial effects because the atoms travel
freely (if field gradients are sufficiently small), whatever the acceleration of the
apparatus. The difference in position of the interference pattern when observed in an
accelerating vs. an inertially stable apparatus can be observed interferometrically,
giving a precise measure of the non-inertial behavior of the apparatus. To make these
ideas quantitative, first imagine atoms with velocity v passing through a matter wave
lens with focal length L/2 as shown in Fig. 5; if the apparatus accelerates upwards at
a. the central atom ray appears to follow the curved path shown, and the position of
the image of the source will have a vertical displacement,

Yf = vyo(2t) - 1/2 a (2t)2 = --at2 = - a(L/v) 2 
,

where t is the flight time for distance L and vy, is the initial y velocity necessary to
pass through the center of the iens. If the h-,is is converted into a separated Fresnel
biprism by blocking off its central dashed portion, the Airy diffraction pattern of the
ýens will be converted into an extended interference pattern and the shift in position of
the central fringe can be measured as a phase shift,

p= 2ntyrld=- 2n7at21d,

where d is the fringe spacing. The above expression also applies to a three grating
interferometer with grating period (or lattice spacing) d.

The equivalence principle dictates that the response of an apparatus with
acceleration g upwards must be the same as a stationary apparatus in a downward
gravitational field with strength g. Thus the phase shift in a gravitational field should

be
2 rg [L]2

d v;
This result (with appropriate tri onoretric modifications for finite opening angle) has
been checked using neutrons; 2 a small discrepancy exists. The application of more
complex interferometer configurations to the determination of the gravitational
gradient has also been discussed. 22
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Figure 5: With no acceleration (i), the atom image (dashed axis) from the lens (dashed) and the
diffraction pattern (solid axis) from the Fisnel biprism (solid lines at edges of lens) line up at y = 0.
When the apparatus accelerates upward (ii), image and diffraction pattern are both displaced by yf
(see Eq. 3).

If the apparatus is rotatin. with angular velocity i, the atoms experience a

Coriolis acceleration ac = - 2 x- .. For the interferomcter discussed above, the
phase shift due to this rotation may be calculated by substituting this acceleration into
Eq, 4 with the result,

4 L2 i3
c= dv '

assuming small opening angles in the interferometer. 'ihis result has been verified for
both neutron 22 and atom interferometers. 7

Although this equation expresses the phase shift in terms of the experimentally
specified parameters, it is customary to express the phase shift due to rotation in terms
of the enclosed area, A, by the atoms, For grating type interfeonieters this is
determined by the diffraction angle, P = XdB/d, yielding •c 2m/71 f- A, the familiar
Sagnac phase for matter wave interferometers, 24,25

Atom interferometers cannot measure as' y new inertial effects intrinsic to
atoms, so the real question is one of technical perlormance. For rotation sensing, the
greater phase shift of matter wave interferometers relative to light interferometers of
the same configuration (by tk.e factor =/to5  - 0,1gt0) sgests that improved atom
optics technology (especially a non-diffractive beawsplitter) should enable atom
interferometers to attain better precision thaa laser gyros. For measurement of the
local gravitational constant (or for accelerometers) the demonstration of sensitivity of
3X 10-8 in the first slow atom interferometer by the Stanford group 26 is very
encouraging, especially if further experiments verify the projected freedom from
systematic error.
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2.3 Fundamental Measurements

The inherent precision available with interferometry makes atom
interferometers ideal instruments with which to make fundamental "null" tests (e.g.
of the charge of a neutral atom). Sens; ivity to phase (as opposed to energy times
time) will allow atom interferoimters to probe physical processes that generate phase
shifts such as Berry's (and other) topological phases (cf. a recent related proposal, 27
also discussed at this conference), the passage of atoms through a waveguide, or the
phase shift which accompanies surface bounces. In general it has not previously been
possible to observe these phase-generating effects.

A recent proposal by Anandan 28 and Aharonuv and Casher29 combines two of
these ideas: it is a topological phase which tests a fundamental tenet of quantum
mechanics - that a phase shift can occur in the absence of any classical force. A
study of this effect using neutron interfen rometers is prescnied in these proceedings, 30

so we need not dwell on its desirability here. The advantages of using atoms are the
greater magnetic moment (partially offset by the large Stark shift which limits the
practical size of the fields which can be applied) and the greater intensity. Together
these should greatly reduce the statistical error and should also allow us to study, for
the first time, the predicted dependence on the dipole orientation.

Another important measurement is the precise deternination of the momentum
of a photon; an experiment underway at Stanford has been described. 31

Before getting too carried away with the possibilities of new fundamental
measurements, we should note that many fundamental experiments in matter wave
optics and matter wave interferometry have already been carried out using neutron
interferometers. A recent review of this work 32 serves as 1,oth a source of inspiration
and a standard of comparison in this field.

2.4 Direct Write Atom Holography

Looked at fiom another perspective, i• r three grating interferometer is a
holographic apparatus that produces a real image in the plane of the third grating. By
changing the geometry (e.g. using the two first order beams from the tirst grating and
the second order beams at the second), this image can be made to differ from the
gratings used upstream (in this example it would be a grating with half the period of
the others). If the middle grating were replaced by a calculated hologram (this would
be easy since the electron beam writer which writes the grating 20 is computer
controuie'), the resulting irnagc could be quite arbitr--ary. Recently it has been
shown 33 that an atom image like the one just described can be written on a substrate
with resolution better than 3000 A, so the possibility of writing patterns of a
particular type of atom on a surface already exists. If some way were found to
develop this image (if it were written in silver, regular photographic techniques might
be applicable) it would be a directly written atom structure.

I
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3. Summary

The future of atoms interferometers looks bright: atom beams are inexpensive
and intense relative to neutron beams from reactors, several techniques have now
been demonstrated to make interferometers for them, and the atoms which may be
used in them come with a wide range of parameters such as polarizability, mass, end
magnetic moment. One can even imagine applications for molecular interferometers.
This assures the applicability of these instruments to a wide range of measurements of
both fundamental and practical interest. Hence atom interferometers may now be
regarded as devices to think up experiments for, Ultimately they should become
sufficiently robust and simple that they can be regarded as instruments, to be applied
technologically or used in other experiments.

Our recent work on atom interferomcters and atom optics is supported by the
Army Research Office contracts DAAL03-89-K-0082, and ASSERT 29970-PH-AAS,
the Office of Naval Research contract N00014-89-J-1207, and the Joint Services
Electronics Program contract DAAL03-89-C-0001. 1 am very grateful for all of this
support, for the heroic work done by my many graduate students, for enjoyable and
helpful discussions on the subject of this paper with C. Ekstrom and J. Schmiedincyer
and for help preparing this manuscript from M. Chapman and T. Hammond.
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FASTER THAN FOURIER

Michael Beriy
11.11. Walls Phy�dcx Laboratory. Tyndc4l Avenue, Bristol RS� lTL, U.K.

Written to celebrate the 60th Birthday of Yakir Aharonov: deep, quick, subtle.

ABSThACT

Band-limited functionsftx) can oscillate for arbitnuily long intervals arbitrarily faster than
the highcst frequency thcy contain. A class of integral representations exhibiting these
superoscillatioes' is described. and by asymptotic analysis the origin of thc phenorncnon
is shown to be complex saddles in [requency spscc. Computations confirm the existence
of superoscillatioris. The price paid for supcmscillat.iot�s is that in the infinitely lon�r
range where fix) oscillates conaventionally its value is expwaentially larger. For example,
to reproduce Beethoveen's ninth symphony as superoscillations with a 1Hz bandwidth
requires a signal cirpi 10t91 times stronger than with conventional oscillations,

1. Model for superoscillations

My purpose is to decribe some mathematics inspired by Yakir Aharonov doring a
visit to Bristol several years ago. lie told me that it is possible for functions to oscillate
faster than any of their Fourier components. This seemed unbelievable, even paradoxical;
I had heard nothing like it before, and Icarned only recently of just one related paper1 in
the literature on Fourier analysis (see §4). Nevertheless, Aharonov and his colleagues hart
constructed such superoscillations' using quantum-mechanical arguments2 . Here I will
exhibit a large class of them, and use asymptotics and numcrics In study their strange
properties in detail.

Consider functions J�x) whose. spectrum of fre�luencies k is band-limited, say by
lkI•1, so that on a conventional viewf should oscillate no faster than cos�x). But we wish
f to be superoseillatot ,', that is to vary as cos(Kx), where K can be arbitrarily large, for an
arbitrarily long interval in x. A representation that achieves this is

I r .�[ I
� j du exp{axk(u) jexp1----�-(u - iA)j (I)

where the wavenumber function k(u) is even, with k(0)�l and Ikl�1 for real u, A is real
and positive, and 8 is small, Examples are

jj� k2(u)=sechu. k3(u)=exp{--P2}. k4(u)=-cosu (2)

55
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Aharonov's reasoning (he suggested Eq.(l) with k4) was that when 6 is small the
second exponential would act like a 'complex delta-function' and so project out the value
of the first exponential at u=iA. Thus f should vary as

f - exp{iKx} where K = k(iA) (3)

Under the conditions above Eq.(2), k increases from u--O along the imaginary axis, so
that K>1, (and for the given examples can be arbitrarily large), and so corresponds to
superoscillat ions. What follows is a study of the small-8 asymptotics of the integral
representingf. As well as justifying Aharonov's argument, this will dissolve the paradox
posed by superoscillations, by showing that when x>O(l/6 2) they get replaced by the
expected cos(x), andf gets exponentially large.

2. Asymptotics

The aim is to get an asymptotic approximation for small 6 to the integral defining
f, Eq.(l), which is valid uniformly in x, To achieve this, it is convenient to define

Sn x5 2  (4)

so that Eq.(l) can be written

f(/s2'A' -2i~ J du exp{.-- -c(u,,,A)} where 0-J(u-iA)2 -i k(u) (5)

For small 6J can now be approximated by the saddle-point method, that is by defonning
the path of integration through saddles us of the exponent and replacing < by its quadratic
approximation near u,.f is dominated by the saddle with smallest Re0. Saddles, whose
location depends on 4 (and also A) are defined by

d0- =o0, --i[)k'(u,)+ (6du

Application of the saddle-point method now ;'.ives the main result:

eXnlixk I) % -s A)2}
f,. "I - o (7)

41- ix6' k"(u;)

To interpret this formula, it is necessary to understand the behaviour of the dominant
saddle as t varies.
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When 4<<1, that is x<<d -2, Eq.(6) gives us-iA, and (7) reduces to Eq.(3); this
is the regime of superoscillations. When 4>>1, that is x>>3-2, the saddles are the zeros
of k'(u); assuming for simplicity that k has a single maximum at u=O (as in the first three
functions in Eq.(2)), this is the only real saddle, and (7) reduces to

~ Ij. ( 1 exp{ix- }7roexp(

This is the behaviour to be expected conventionally, that is on tie basiF of the frequency
content of f; in the infinite range of validity of Eq.(8), f is O(exp(A 2 /2,2} and so
exponentially amplified relative to the superoscillation regime.

As x increases, the saddle moves from iA to 0 along a curved track, illustrated in
figure 1. This is the dominant saddle us; its track resembles figure 1 for all k(u) of this
type that I have studied. There are other solutions of Eq.(6), whose arrangement and
motion are complicated and depend on the details of k(u), but they are not dominant and
so do not compromise the validity of Eq.(7) as the leading-order approximation to the
int"gral definingf Eq.(l).

2

0.5.

0.
01 0.2 0.4 0,6 0.8 1

Re u

Figure 1. Track of leading -aldle u. as t increases from 0 to oo for dte wavenumber function k*(u) in
Eq.(10), for A=2 (the track is similar for any k(u) with a single maximum)

In understanding the oscillatiou.-, it is helpful to study the local wavenuniber,
defined as

q(')- -Im°d{u;(4)'¢'A Rck(U(.)) (9)

As illustrated in figure 2, q(4) decreases smoothly from k(iA) (which is real) to 1 as
increases. Note that the decrease is rapid (this is true for all k(u) that I have studied). This
has the important implication that to observe superoscillations it is necessary to keep
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much smaller than unity, and if we want to allow x to be large, in order to observe many
superoscillations, 6 must be correspondingly smaller, Eq.(4), and the exponential
amplification in the regime of conventional oscillation, Eq.(8), will be correspondingly
larger.

3,

2.5

2

1.5

0 1 2 3 4 5

Figure 2. Local wavenumber q(&, Eq.(9), for the kj(u) in Eq,(iO), for A=2

None of the wavenumber functions in Eq.(2) gives an f whose integral
representation can be evaluated exactly in terms of special functions, However, if we
choose the wavenumber function

k5(u) -- - _Ju2 (10)

we can ensure that it is band-limited ( Ikkl) by restricting the range of integration in
13q.(1) to IuIQ2. The resulting truncated integral is

2

J'(x,A,8) - 2 f dUexp{ix(l - ½u2)}exp{--2-- (u - iA)2} (11)
2

which be expressed in terms of error functions:

f (x, A,B) = __ (12)x2+A +
2 +o= --r.--- exp." 2er _e2{V j (12)

'[ cr 62 + + 2iX62z + cr 62 -i + 2iX6i2

It is instructive to examine this in detail. The superoscillation wavenumber,
Eq.(3), is



59

K =k5(iA) 1+IA2  (13)

There is a single saddle, at (figure 1)

U iA (14)

and the local wavenumber is (figure 2)

2(1+€2) (5)

For this case, the saddle-point approximation, Eq.(7) gives

f~~'+ AX2 I Jx 2 67 1 2J1 X2 .54) 16

However, the asymptotics of (11) includes contributions from the end-points
u---±2 as well as the saddle us. This can be seen by realising that the steepest path between
-2 and +2 runs from -2 to infinity in the negative half-plane, through us to infinity in the
positive half-plane, and back to +2. The end-point contributions oscillate conventionally,
with the wavenumber -1, so we must be sure that they do not mask the superoscillations
that exist fto small 4. The condition for this is that the absolute value of the Gaussian in
(11) must not exceed unity at the end-poii fs. Thus

exp- -} 1, i.e. A•2 (17)

(we include the equality because the end-point contribution is smaller than that from the
saddle by a factor 6), Fq.(13) now implies that the maximum rate of superoscillation
obtainable with this model is K=3. (It is worth remarking that x=0, A=2 lies on the anti-
Stokes line for the error fu,,ctions in Eq.(12), that is, where the exponential contribution
from the saddle exchanges dominance with those from the end-points.)

The representation Eq.(1) does not have the form of a Fourier transform, namely
(for a band-limitud function)

f(x,A,8)= fdq, ptixqjj(q) (18)
-1
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It is however easy to cast it into this form. The transform f(q) depends on the inverse
function of k(u); this is multivalued, and the path of integration can be deformed into a
loop around a cut extending along the real axis negatively from the branch point at q=1
(the ends of the loop are pinned to the cut, at q=-I for k5 and at the essential singularity
q==0 for k1 , k2, and k3). Again there is a dominant saddle, which for sinall ý lies at q=K,
and the loop can be expanded to pass through this. All previous results can be irproduced
in this way.

3. Numerics

The aim here is twofold: to compare the saddle-point approximation Eq.(7) with
the exact integral (1), and to exhibit the superoscillations. I carried out computations off
for the wavenumber functions kI, k2, and k3 (Eq.(2)), but will display results only for
Ref (Imf is similar) for k5 (Eq.(10)), with the truncated integral of Fq.(l 1), for which
the results are very similar. The computations will be exhibit, .1 for the fastest
superoscillations, namely K=3, that is A=2 (Eq.( 17)), choosing "=0.2.

Figare 3 shows the results. The superoscillations for small x, with period 2r/3,
are shown on figure 3a, and figure 3b shows a range of x where there are conventional
oscillations, with period more than 3 times greater (actually about 8.4 - cf. figure 2,
where - 1.6 corresponds to x - 40). In both cases, the approximation (in this case
Eq.(16)) agrees well with the exact expression, Eq.(l 2). For example, the fractional error
is 0.18 for x=2, and 2,8X 10- 18 for x=42. Note the enormous ratio of the sizes of f for
large and small x; from Etl.(16), this can be estimated as exp(36)-1016 (the asymptotic
ratio of Eq.(8) is not attained in figure 3b). The transition between the superoscillation
and conventional regimes is clearly shown in figure 3c.

In these computations, the value A=2 is the largest for which the saddle dominates
the end-points. The competition between contributions shows up most clearly at x=,O, for
which (12) gives

f (0, A,3) = Rceef fI(r2 ,, A (19)

For A<2,f is well approximated by the saddle contribution of unity, for A>2, the end-
points dominate andf increases exponentially, Eq.(1-), masking the superoscillations for
small x. This is illustrated in figure 4. Even at the ,ritical value A=2, that is, on the anti-
Stokes line for the function (19), the exact vahlef-0.945 is close to the saddle-point
valuef-l.
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Figure 3. Compubations of ftx.2,0.2) for thc truncated integ~ral. Eq.(i I), showing (a). superoscillations,
and (b) conventional oscillations. Circles: exact expression, Eq,(12); full lines: saddle-point

approximation, Eq.(16). In (c) thc logarithms are bas 10
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Figure 4. Compulations of log V(41. A, 0.2)1, Eq.(19), for the truncated integral Eq.(l 1 ); logarithms arc
base 10. Note the exip)nential growth after crossing the anti-Stokes line at A=2

4. Beethoven at 1Hz

Professor I. Daubechies has informed me that superoscillations arc known in
signal processing, in the context of oversampling. This is sampling a function faster than
the Nyquist rate, i.e. at points x=nnr where the function is band-limited by Ikl!l. If a
function is overswi led in a finite range, extrapolation outside this range is exponentially
unstable2 . She quotes B. Logan as saying that it is possible in principle to design a
bandlimited signal with a bandwidth of 1Hz that would reproduce Beethoven's ninth
symphony exactly. With the superoscillatory functions described in this paper it is
possible to give an explicit recipe for constructing this signal, ats I now explain.

We require superoscillations for the duration T (-4000s) of the symphony.
Therefore the desired signal B(t) can be represented as periodic outside this interval,
namely

N .2yrntl
B(t)= Y B'expi T (20)

-N

Here N is the order of the Fourier component corresponding to the highest frequency
Vmax z N/' (-20kliz) it is desired to reproduce,

T'o approximate this with a signal band-limited by frequency vo illiz) we makc
the replacement

XI 2rnt - (t) (21)
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where (cf.Eq,(1)) On is the superoscillatory function

du ffexp{i2rv{u)}exp{- (u- iA)2} (22)
61 28T

Here the frequency function v(u) never exceeds (for real u) its band-limited value
v(O)=-vo, and An and 6n will now be determined by the requirement that 0,
superoscillates with frequency nWT for time T'.:4 "'.he superoscillation frequency of C, n(t) is v(iAn) (cf. Eq.(3)). Thus fromSEq. (2 1) A, mu st sati sfy

n(23)v(iA,,) =--( 3
T

We fix 5, by requiring that the superoscillations are maintained for time T, in the se~.
that the replacement of Eq,(21) remains a good approximation. For this we require the
next correction to the superoscillatory exponential that aOn(t) represents. Expanding the

saudie-point approximation to Eq.(22) (analogous to Eq.(7)) for small t, we find

S2{ n p 2c262 ,2(iAn).t2} (24)

The second factor is an increasing exponential, because v'(iAn) is imaginary, anu must
remain close to unity for O<t<T. Thus

6n <<j27tj'(iAnfT_1  (25)

Choosiýlg A, and ( as in Eqs.(23, ,nd (25) guarantees that the signal B,#t), with
its frequencies up to Vmax, will be imitated for time T. When t>T the imitation will grow
rapidly in strength, and eventually, that is when it is oscillating at the frequency vo
corresponding to its Fourier content, it will acquire an amplification factor corresponding
to i.s largest Fourier component n=N. An argument analogous to that leading to Eq.(8)

gives this factoi as

F = exp{N >> exp A Jr2T2,v•)AN), 2  (26)

with ,N dcoermined by Eq.(23) with the right-hand side set equal to Vmax.

Iet us calculate this amp!ification for the mndel frequency function

v(•) = voexp{- u} (27)
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(cf. k3(u) in Eq.(2)). We find

A2 = log{M-0fl&} (28)

and hence, from Eq.(26),

F»> exP{xr log2 VO aX ~ T2 } ,29)

For Beethoven's ninth symphony this gives

F >> exp{1019} (30)

This amplification will not be achieved until a time tf, which can be estimated by the
argument preceding Eq.(8) as

- - 108years (31)

Other choices for v(u) give similar expressions and numerical estimates.

The estimate of Eq.(30) indicates that to reproduce music as superoscillations
requires a signal with so much energy as to be hopelessly impractable, but more modest
bandwidth compression might be feasible.

5. Concluding remarks

Aharonov's discovery, elaborated here, could have applications in several
branches of physics. One possibility is the use of superoscillations for bandwidth
compression as discussed in §4, Another example, also in signal processing, concerns
the observation of oscillations faster than those expected on the basis of applied or
inferred filters. These would conventionally be interpreted as high frequencies leaking
through imperfect filters, but the arguments presented here show that the phenomenon
could have a quite different origin, namely superoscillations compatible with perfect
filtering.

Perhaps more interesting are the possible applications of superoscillatory
functions of two variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the wavelength A would be resolved
by representing them as superoscillations. (This is different from conventional
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superresolution, which is based on the fact that Fourier components larger than 27r/X can
be present in the field near the surface of an object, but decay exponentially away from
the object because the wavenumber in the perpendicular direction is imaginary. With
superoscillations, the larger Fourier components are not present.)

Superoscillauons can probably exist in random functions f(x): arbitrarily 1.ng
intervals, in whichf is exponentially small relative to elsewhere, could superoscill~ite.
Consider how this might be achieved. If f is Gauss-distributed, its statistics are
completely described by its autocorrelation function, which by the Wiener-Khinchin
theorem is the Fourier transform of the power spectrum S(q) off. Even if f is band-
limited, it ought to be possible to choose S(q) with analytic structure (saddles with
Re q >1, etc.) such that the autocorrelation superoscillates as it falls from its initial value.
This idea is worth pursuing.

On the purely mathematical side, it is clear that superoscillations carry a price: the
function is exponentially smaller than in the regime of conventional oscillations, with the
exponent increasing with the size of the interval of superoscillations. We have seen
examples of this, but there ought to be a general theorem (perhaps based on a version of
the uncertainty pi inciple).
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BERRY'S PHASE, MESOSCOPIC CONDUCTIVITY AND LOCAL FORCES
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ABSTRACT

A ring in a magnetic field whom direction varies in space is considered. It is shown
that the Berry phase accumulated by the spins of electrons encircling the ring affects
the conductance of the ring in a way similar to the Aharonov-Bohm effect. A time-
dependent Berry phase is shown to induce a classical motive force in the ring. The
condition for adiabaticity is studied, as well as deviations from that condition, The
relation to spin -orbit coupling is discussed.

1. Introduction

This paper studies an effect of the geometric (Berry's) phase(1 )(2)on electronic
transport in mesoscopic and macroscopic systers.(3 )The reader might be somewhat
surprized by the order in which the subject is presented below. To some extent, that
order resembles a presentation of the theory of electromagnetism, but in reversed
order. A study of electromagnetism usually starts with a description of Coulomb's

and Lorenz' forces. Then, the concept of potentials is presented, as a tool for calcu-
lating forces and fields. And finally, the special role given by Quantum Mechanics
to vector potentials, as geometric "phase shifters", is introduced, and the non-local
nature of Quantum Mechanics is revealed. This paper, however, like many other
studies of Berry's phase, starts with an investigation of a quantum mechanical geo-
metric phase. In the case discussed below, the phase is accumulated by an electron's
spin moving in a space-dependent magnetic field. Then, this effect is put in termis
of a vector potential. And finally, the effect of this vector potential on the classical
dynamics is revealed.

2. A conducting ring in a space-dependent magnetic field

The simplest example that illustrates the concept of Berry's phase is that of
a spin-' that follows adiabatically a magnetic field whose direction varies in time.
When the magnetic field returns to its initial direction, the spin wave function
is found to have acquired a geometric phase factor, given by half the solid angle
subtended by the magnetic field during its variation. This phase can be regarded
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as induced by a geometric flux, similar to the phase shift induced by an electro-
magnetic flux in the Aharonov-Bohm effect.(') 2 )

Motivated by this similarity between the fluxes, we turn to investigate Berry's
phase analogies to two physical effects involving an electromagnetic flux: the in-
duction of current in a conducting ring by a time dependent electro-magnetic flux
(through Faraday's law), and the effect of time-independent flux on the conductiv-
ity of a mesoscopic ring (through the Aharonov-Bolhn effect).(4)()In these analogies,
the electron's spin plays the role played by the electric charge in the electromag-
netic effects. Another analogy, introducing persistent currents induced by Berry's
phase in ballistic rings, was recently discovered in an instructive work of Loss, Gold-
hart and Balatsky(6 ). In the following paragraph we define a thought experiment
in which electrons in a mesoscopic conducting ring follow adiabatically a magnetic
field whose direction varies spatially, and thus accumulate Berry's phase. By map-
ping that phase onto an effective vector potential, we show that when the phase is
time-independent, it affects the ring's conductance. When the phase varies in time,
it induces a current in the ring. By discussing the analogies to the electromagentic
phenomena, we point out that the effect of a time-independent geometric flux is
observable only in mesoscopic rings, while the effect of a time-dependent geomet-
ric flux should be observed also in macroscopic rings, i.e., it dues not depend on
phase coherence. Since the adiabatic approximation is crucial for this discussion,
we examine the conditions for its validity, and its dependence on the disorder in
the ,ing. We also conmment on the remnants of the geometric phase in the non-
adial -ttic limit, and on the relations of these effects to spin--orbit coupling. While
for p actical reasons our discussion is concentrated on the electric properties of the
ring, we nevertheless stress that the electric charge of the electron plays no role in
our analysis. Our results steim from the Zeeman interaction, and are therefore valid
for all spin- particles, irrespective of their charge.

We consider a quasi-one dimensional ring, whose radius is a. The ring lies
in the z ® y plane, and its center is in the origin. A non-unifornm magnetic field is
applied on the ring in the following way: first, a magnetic field B# tangent to the
ring is induced by a current carrying wire lying along the z-axis. Second, a uniform
field, B,, is applied on the system, parallel to the z-axiz. Adopting a cylindrical
coordinate system, the total magnetic field has a component B, created by the wire
at the ý direction, and a component B, at the i direction. Along the ring, the
magnitude of the field is constant, but the direction varies. In fact, it follows a
cone ahaped path, where the an-gAe between the cone and the z-axis, denoted by a,
satisfies tana = or (See Fig. 1). The spin of an electron that slowly encircles the ring
is then expected to follow the direction of the magnetic field and thus accumulate
a geometrical phase of

Ot(1) =- 4 (1 + c8 a) (1)

i.e., half the solid angle subtended by the the magnetic field it goes through (The 1, +
and j, - refer to the spin being parallel and anti-parallel to the field, respectively).
The angle a is determined by the current through the wire and by the uniform field
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along the z direction, both of which we regard as the controlled variables in the
experiment.

Figure 1: The physical problem co, isidered. A ring is put in a uniforrm external magnetic field Bs.

and a tangential magnetic field B# created by the current carrying wire. The ratio between the two

fields define the angle a,

3. The adiabatic approximiation

Our discussion of the above described thought experiment involves several
parts. In this section we use the Born-Oppenheimer approach in order to separate
the Hamiltonian of the system into two parts, one (the adiabatic part) in which

the spin follows adiabatically the direction of the magnetic field., and one (the non
adia~batic part) which is purely non-diagonal with respect to the eigeustates of the

adiabatic part. We show that the adiabatic part includes a geomuetric vector poten-
tial that couples to the electron's spin. Assumning that the ring is one dimensional,
its Hgamiltonian is

H = T" -+ v W• - UB if) # •

where 11 = -l- • is t.he generalized momentum (a system of Units where h = I is
utilized), V(O) is the. impurity potential along the ring, a is the magnetic moment, M

is the mass of an electron, and a is the Pauli matrices vector. Attempting to discuss

the adiabatic limit, we diagonalize the spin dependent part of the Harmiltonian,
treating the angle 0 as a parameter. Denoting the two eigenstates by IT(M) (14(0)),

Jz
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corresponding to the spin being parallel (anti-parallel) to the magnetic field, we
get

IT(0)) = ("- ic -') and 11(*)) (isiuI.'-) (3)

The corresponding eigenvalues are :FpB where B s VB + B,2. Defining itow 0) as

the cigenstate of the operator e';, the two sets of states {11(0)) 0 10) 10 < 0 < 2,1

and {Il(0)) ® 10) 10 < 0 < 2.} constitute together a basis of the Hilbert space of

the Hamiltonian (2) . Each one of these sets span a, subspace in which the spin is
either parallel or anti-parallel to the magnetic field. The impurity potential is spin
independent, and hence, it i diagonal in that bajis. However, the kinetic part of the
Hamniltonian has matrix elements that connect states within the subspaces defined
above, as well as matrix elements that connect states of different subspaces, i.e.,
induce spin-flips. A simple calculation shows that the matrix elements connecting
states within the first sub-space are,

2[11 _ ý--,),,l

( -A 00 ( MO = (01•o- .M W0) (4)

The corresponding matrix element in the second subspace has ni, rather than U1.
These matrix elements demonstrate that within the adiabatic approximna-

tion, the spatial variation of the magnetic field induces a vector potential(7 )whose
magnitude is independent of the electron's charge, but is rather determined by
the direction of the spin being parallel or anti-parallel to the field. Following the
method outlined recently by Aharonov etL,al.,()we construct an operator A, in such
a way that the operator &11 - A,]2 has diagonal matrix elements given by Eq. (4),
and does not have any elements connecting states with opposite spin direction. A
simpl� calculation shows that

AR = s-inar[ccma - .i. (5)

Note that A2 
-= 4in 2  is a c-number, and A, has non-zero matrix elements only

between states of opposite spin directionH. Consequently, the se.paration of the
Hamiltonian to ani adiabaxtic part, Ho, and a purely non-adiabatic part, H1 , is given
by

[i- A[ill - A,1+V()O-pf() - a (I)
2M SM+O

and
- - M - AA +. A&(r - Aý )](7

2M - .A ,(A I - (7)

By construction, H0 has a seo of eigenstates In, T) = II(o)) ® Q1b(0) in which the
spin is parallel to the field, and a I, of eigenstates In, 1) = 11(o)) ® Onl(o) in which
the spin is aut;-parallel to the fieh, The wave functions 01(o) and 01(0) satisfy
the Schroedinger equations- n7(l),plMt• =. ETMt(l)•t(, where the Hamiltoniarm 110,1mar

given by,

V;;,, - -~ + V(O) pB +u 4 in' •€}(
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Each of these Hamiltonians is a projection of the full Hamiltonian onto one of the
subspaces defined above. The meaning of the induced vector potential becomes
clearer when one considers space translation transformations. The momentum op-
erator, pt' is, of course, the generator of such a transformation, i.e., for any state

*I, (0Je-'V-[q* = (0 + 4-I*). In such a transfornration, the electron is translated
spatially, but the direction of the spin is kept constant. On the contrary, the gen-
eralized momentum appearing in the adiabatic Hamiltonian, R - A is the generator
of a different translation transformation, a transformation in which the electron is
translated spatially, and the direction of the spin follows the direction of the field.

We conclude this section by emphasizing its main conclusion: Under condi-
tions in which the adiabatic approximation is valid, namely, Hn can be disregarded,

the ring can be viewed as composed of two uncoupled electron gases. Those gases are
subject to the effect of different geometric vector potentials and opposite constant
potential energy, originating from the Zeeman interaction. They are also subject to
the effect of identical electromagnetic flux B3.ra2 and identical impurity potential.

Each of the two gases obviously does not have a spin degeneracy.

4. Non--local and local effects of the geometric flux on electronic trans-
port

In the next part of the discussion we assume that the magnetic field is strong
enough for the adiabatic limit to be applicable. The discussion of the precise mean-
ing of "strong enough" is postponed to the next section. Assuming that the Zeeman
energy pP is smaller than the Fermi energy, ei, our ring consists of the two uncoupled
electront gases described above. The electric conductance of the ring is then the suim
of Lhe conductances of the two gases. As discussed extensively in recent years,(4)(1)

th, conductance of a miesoscopic ring depends on a magnetic flux threading the
ring, through the Aharonov--Bohm effect. For rings in the diffuiive regime, the
flux dependence of the conductance is manifested in two differunt contexts, namely,
the average conductance of an ensemble of macroscopically identical rings and the
sample -specific fluctuations. The flux-dependent part of the average conductance
was calculated by Al'tshuler, Aronov and Spivak("), and shown to be,

e 'a siidi() (1

rc0 6 b(r) .- com(7jt

where b is the flux threading the ring, r =_ iY and 14 is the phase breaking length.
Adjusted for our purposes, this expression is written for one spin direction. In th(e
configuration we discuss, the flux threading the sample is a sum of an electromag-

netic flux 0.,, = BT7ra', and the geometric flux 0, S L(1 +tosa), where the ± refers to
electrons whobc spin is parallel (anti -parallel) to the field. It should be noted here
that the sum of the two geometric fluxes corresponding to the two gases equals a
flux quantumn. This stems from the fact that the suim of the geometric phases accu-
mulated by the two spin directions is 27r. Since all properties of the ring are periodic
with respect to one flux quantum, one can view the two electron gases as subject to
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the influence of geometric fluxes of equal magnitude and opposite directions. The
total quantum correction to the conductivity is given by

e e&a sinh(r) + sinh(r) (10)
cwr)- Vo.kt±t2 osr)-CO@(i!±.~

This quantum correction to the classical Drude conductance results from interfer-
ence of pairs of time-reversed patbls.)The flux dependence sterna from the phases
accumulated by those paths that enm 'rle the ring. When r > 1, the interference of
long paths that encircle the ring mou than once is exponentially suppressed, and
the flux dependent correction to the conductivity can be approximated by

------ e ( cos(

Then, the #f periodicity of the Aharonov-Bohm oscillations of the conductance is
multiplied here by a geometrical factor, cuc( 5

jiL). Note that the difference between
the Fermi wavelengths of the two spin directions is not reflected in the expressions
above, since the quantum correction to the conductivity is independent of khr. 1 .

The effect of the geometric flux oil the Hampie-specific fluctuations of the
conductance is best understood when the periodicity of those oscillations with re-
spect to B. is considered. In the absence of geometric flux (Bo = 0), the 00 flux
periodicity yields a field periodicity of AB, = J, irrespective of the spin direction.
In the presence f geometric flux, a variation of B, varies both the electromagnetic
and the geom ',ixes. Thus the periodicity with respect to B, is changed, and is
no more indepei At of the spin direction. Specifically, when B, < B# (i.e., a - )
the geometrical flux is approximately SIj&, andl the B. period becomes,

AH, (1 C2)

where the +(-) sign refers to the spin being parallel (anti- parallel) to the field. The
magnitude of the sample-specific fluctuations is not affected by the geometric flux,
i.e., it is of the order of •-.

Eqs. (10) -- (12) sumtmarize our predictions for the effect of Berry's phase on
die conductivity of a mesoscopic ring. We now turn to discuss the case of a time-
dependent geometric flux, and, in particular, the currents it induces in the ring. We
consider the case in which the tangential magnetic field is B# = o•s'uct. In order
to avoid, at this stage, the complications involved in the analysis of the adiabatic
condition for that case, we limit ourselves to the case ill which the eicutron gas it
completerly spin-polarized. This is realized when Er + W < JB,, i.e., the electron
gas is spin-polarized, and an absorbtion of an energy quantum hw still does not
allow electrons to flip their spins. For send- conducting rings, this condition may be
fulfilled at fields of the order of 1 Tesla. By passing, we note that another way to
realize t. completely spin polarized electron gas is by an injection of spin polarized
electrons through a ferromagnetic--met.dhic interface.0(iUnder the assumption of



72

complete spin polarization, the electron gas in the ring is subject to the effect of a
time-dependent geometrical flux

-- +c V1 + {4.Coswo2

Consequently, this gas is subject to a motive force e, given by e -'d#. and this

motive force induces a current in the ring, according to Ohm's law. Assuming that
BO < B., the motive force induced by the time dependence of 0, is

S=w4(B4/B4) sin2wi (13)
2

The frequency of the induced current is twice as large as that of B#,, so that it
can experimentally be distinguished from currents induced due to the wire being
not exactly perpendicular to the ring. For B. = 1 Tesla, B# = 0.2 Tesla and w a 1
GHz, this motive force has an amplitude of 10- 7 Volts. Similarly to the electro-
motive force, the geometric motive force can be amplified if the ring is replaced by
a solenoid.

There are a few points that should be stressed regarding the case of a time
dependent geo-etrical flux. Firstly, contrary to the effect of a time independent
flux, the time dependent geometric flux exerts a force on the electron, (12)similar to
the electric force exerted by a time-dependent electromagnetic flux. Thus, similar
to the obseravtion of currents induced due to Faraday's law, the observation of
currents induced by the geometric flux does not depend on the electron phase being
coherent along the ring. Those currents should be observed in macroscopic rings,
as well as in mesoscopic ones. In fact, the force accelerating the electrons in the
case of a time- dept: ident geometric flux is elassical.( 3 )Secondly, the motive force
induced in the ring is not electric, since if the electrons were replaced by neutrons,
the picture would not have changed. The field, given by the derivative of the vector
potential with respect to the time, does not couple to the electric charge, but rather
to the direction of the spin. Thirdly, the origin of the motive force exerted on the
electron can be understood by noting that in our symmetrical structure the sum
of the orbital and spinor anguilar momenta in the z direction is time- independent
even when the angle a is time dependent. Thus, a change ini a transfers angular
minoentunt from the spin to the orbital motion of the electron. A more general
analysis Of t.:r .. r the point cf viev., of elm-sical. equat,;ns of motion is
given in Ref. (13).

So far we have discussed the currents induced by the geometri, otive force
only in the caue of complete spin-polarization of the electrons. Howev. r, the flux,
motive force and current all depend on the direction of the spin. Therefore, if the
ring includes two electron gases with opposite spin directions, the currents induced
in the two gases are opposite in direction, and the net current is proportional to the
difference between the conductances of the two electron gases in the ring. Such a
difference arises from the 2/,B difference between the kinetic energy of electrons in
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the Fermi levels of the two electron gases.

5. Conditions for the validity of the adiabatic approximation

In this section we analyze the conditions under which the non-adiabatic
part of the Hamiltonian, H1 , can be disregarded. Our discussion concentrates on
the time-independent magnetic field and on the non-local effects it induces in the
electronic transport of the ring. We start the discussion by considering the ballistic
case, where V(O) = 0, a ease for which the full Hamiltonian can be exactly diagonal-
ized. For a ballistic ring the eigenstates of both /4m are given by 0(1)(0) = i#.

The matrix elements of III connect only states of opposite spin direction and jden-
tical spatial wave function. They are given by (m, I IM, in, T) = - L•i in 96,,,, where
n, =-- Consequently, the exact eigcnstates of the full Hamiltonian (2) are
given by

S(cooie-io and In, 1(0)) = e'"* ( An cedi) (14)

where y is implicitly given by

Ctt7(2ta+ -1l) )
cot3'Y = cot(r +)

The corresponding eigenvalues for In, t) and I", i) are
E(n) = ' (2n'- 1) co

2Ma2 4MaO1( i oT 1 Bc6' )(6

The adiabatic approximation taken in the previous sections amounts to ap-
proximating y = a for eigenstates for which the spin direction is parallel to the
magnetic field and 7y = + v for eigenstates for which the spin direction is anti-
parallel to the field. As seen from Eq. (15) , the adiabatic approximation is valid,
for a ballistic ring, when pft • The physical meaning of this result is better
understood when noting that A is the time it takes an electron whose momentum
is U. to encircle the ring. The adiabatic approximation is then valid when this time
is much longer than the precession time of the spin. Since our main interest is in
the validity of the adiabatic approximation for electrons at the Fermi level, where

Sv. is the Fermni velocity, the condition for the adiabatic approximation to hold
i, pBa ()

VP

The exact solubility of the ballistic case allows for a detailed analysis of deviations
from the adiabatic limit. This analysis is given in the next section.

In the presence of impurity potential, the eigenstates of H•(1) are not eigen-
states of the momentum operator 11, and therefore III couples each eigenstate In, 1)
to a continuum of states Ir, 1) (and vice versa). Due to that coupling, each adiabatic
cigenstate acquires a finite lifetime, r. We now calculate this lifetime perturbatively
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using the diagrammatic impurity technique.(6) According to Fermi's golden rule, the
scattering time from a state In, T) due to the perturbation H, is

-n = (n, TIIHII-, 1)D12 (E± - E,) (18)
h n,)m)

(Note that H11 is purely non-diagonal in spin states). While this lifetime in - mean-
ingful quantity for a given ring with a given impurity configuration, it is no ultable
for impurity averaging - one cannot identify a state In, 1) in two rings of different
impurity configurations. Therefore, we define the average lifetime for a state with
energy E, T(E), as the average of ! (In, 1)) over all states In, t) with energy E:

-(K) = -2 ' ¼'
M w -T() ( E.) I7l~~IHiIn,t1)126(E- Et) (

where v1 is the density of states with the spin parallel parallel to the field. The
corresponding expression for the lifetime of a state Ihai) has ,4 rather than vt .
Next, we examine the perturbation H1. This perturbation ir a product of two
operators. The first, A,, flips the spin state from being parallel to the field to being
antiparallel, but does not affect the spatial wavefunction 01. The second, '(i1 - A,),
is the projection of the velocity operator onto the spin-diagonal subspace. Thus,
the average lifetime for a state with energy E is

T =- w-s14•#Ei•.(#nlI(E• -- 4~)fi6(E- Hdo)l',,) (20)

where 6= = (-'• -S ) Note that the second line of Eq. (20) is all expressed
in terms of single particle spinless operators and wave functions. There are two
differences between the two spinless HamiltonianTi H1,, z4,. First, they differ in the
sign of the Zeeman energy. Second, they differ in the value of the geometric flux.
If the second difference is disregarded for the moment, then the Zeeman energy
difference can be absorbed in the energy arguments of the 6-functions. When this
is dlone the two Hanuiltonians become identical, but the energy arguments in the
two 6-ftmctions differ in 2pB. Then, Eq. (20) strongly resembles Kubo's formula
for the ac conductivity,

0.M 7r'(0.6'ýbf + hw - l1o)fi6er . Io)£ýb,,) (21)

Thus, one might expect that under conditions in which ... fl.x sensitivity of ... Hg
can be neglected, the average life-time L(E) is proportional to the ac Kubo conduc-
tivity, at frequency 2 p3. This neglect can be expecteA to be valid up to a leading
order in -1-, an order in which the conductivity is given by the flux-independent
Drude formula. The diagraunmatic calculation presented below shows that this
expectation is indeed correct.
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The diagrammatic calculation of Eq. (20) starts by writing

6(E - Ho)1= I I1 - EI ) = I (GR(E) _CA (E)) (22)2(-H)= E-HO-k E-Ho+if' 2w

with e being an infinitesimal real number, and GR(E),GA(E) being the advanced and
retartded Green's functions. Note that H0 is the adiabatic Harniltoniaja, including
the impurity scattering. Employing the conventional impurity technique, we first
calculate the contribution of the "classical", Drude-type diagrams (see Fig. 2).
Those diagrams are calculated by approximating the Green's function as diagonal
in momentum space, with an imaginary part -L added to the energy (r., being
the elastic mean free time), namely, G4t(p, p') = 744-jf- and correspondingly for

GAt,GRI,CGA. The energy E4(1) is given here by Ep = •7j(v - 6 + + ai.
Substituting these Green's functions in Eqs. (20) and (22), and taking only terms
of order cr-a, we indeed find that the inverse lifetime is proportional to the Drude
expression for the ac conductivity.

1 D w0 sin
2 

a D r2 
- 2 o'-(2pB) (23)

7 = (2..p 2 (2pBr,) 2 + I = (2w-)2' " a2e

where D is the diffusion constant, and o.,, a&d are the Drude expressions for the ac
and de real conductivities. Eq. (23) is our first approximation for the impurity
averaged lifetime. Before proceeding to improve it, we first use it to get a first
approximation for the condition for adiabaticity.

Figure 2; The Drude-type diagrams summed in the expression for the average lifetime, Eq. (23).

For an electron to be non-locally affected by the geometric flux, its spin
has to follow the direction of the magnetic field a time long enough such that the
geometric phase it accumulates is significant. Hence, when the angle a is of order
"nity, the lifetime of the adiabatic states, given in Eq. (21), has to be longer than the
typical time it takes a diffusing electron to encircle the ring, URL. This condition
is fulfilled when

2pJr-j > 1 (24)

Therefore, in the diffusive regime, the adiabatic approximation is valid when the
spin precession time is much shorter than the time between elastic scattering events.
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In terms of the ac conductivity, the adiabatic assumption is valid when the Zeeman
energy is large enough so that the ac conductivity at the corresponding frequency
is much smaller than the de conductivity. Eq. (24) is the condition for adiabaticity
also when a < 1. In that case, the lifetime of an electron has to be long enough
for the electron to encircle the ring a-' times - until it accumulates a significant
geometric phase. Thus, the condition for adiabaticity becomes I > Q', which
reduces to Eq. (24).

The inverse life-time -L was calculated above only to the leading order Fr.1.
The next order contribution, independent of err.j, shouid be calculated by summing
the maximally crossed diagrams, the Diffuson and the Cooperon. Again, these
diagrams are pi rtional to those appearing in the calculation of the quantum
correction to the conductivity at frequency 2pB, with a difference in the flux affecting
each of two Green's functions. However, as long as the Diffuson and the Cooperon
are expected to be a small correction to the classical Drude result (that is, as long
as 4kp > 1), Eq. (24) can be accepted as a first approximation to the adiabaticity
condition. Then, the Zeeman frequency 2,10 should be of the o. ter of the inverse
elastic mean free time. For such a high frequency, the quantum correction to the
conductivity is vanishingly smll.')() Therefore, for rings in the metallic regime,
where kl 1 1, Eq. (24) is the condition for adiabaticity.

We conclude this section by making a few comments regarding the adi-
abatic condition (24) . First, we interpret ith physical origin. As argued by
Thouless,(14)contrary to the plane waves eigenStates of free electrons, the single
electron eigenstat(s in a disordered system are superposition of plane waves, with
typical spread of ', where I is the elastic nican free path. In kinetic energy ternli,
this width is translated into -L. Therefore, the matrix lehments of the generalized
mnonmentum operator, II, between states whose kinetic energy differ by more than

arte negligible. On the other hand, flips of the spin due to II occur only at the
Fenni level, i.e., between states whose kinetic energy differ by 2p]. Hence, when
the condition (24) is valid, the non adiabatic matrix elenments between states at the
Fermi level are negligible, and the life--time becomes long. In fact, the condition
(24) can be understood ILISE, when One considers an electron moving along a typical
one dimensional diffusive path 0(1) (0 is again the azimuthal angle describing the
electron's position). In the limit of a strong magnetic field, the amplitude of It
non--adiabatic spin-flip of the electron is given by(it)( 16)

The states It) depend on time only through the time dependence of the path
0(t). Thus, the time derivative makes the scalar product (i(tOijlj(t)) proportional
to the electron's velocity. The amplitude a(t) becomes exponentially small wheni
the phase of 6 420"' oscillates many tines during the characteristic period in which
the scalar prduct (l(t)1S1 11(t)) significantlly varies. This time is the characteristic
time during which the velocity varies significantlly, namely, the elastic mean free
time. Therefore, when the Zeeman frequency 2p1A is much larger than the inverse
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"-* elastic mean free time Eq. (25) yields an e.-ponentia'ly small amplitude. Second,
we comment that under the strong magnetic fields re-, dred to satisfy the condition
(24) , one should distinguish between the diffusive limit W•rTj < 1 (where w, is the
cyclotron frequency) and the Landau levels limit wrv . I. The relevant limit isdetermined by the value of the electron's g-factor. Here we assume that the diffusive

limit applies. Third, we . omment on the relevance of . to interference effects. As
discussed above, the geometric phase accumulated by the electron depends on the
direction of its spin. If that direction is flipped at various points along the path,
this phase is rantloz ;zed. Hence, non-adialjatic spin-dilps dephase the interference.
In the present work we neglect all other mechanisms of dephasing, and thrrfore r
is to be identified with the phase breaking time r#. It is then useful to calculate
tle ratio of the circumference of the ring to the phase breaking length Lo =_ VN#,,
denoted ',-; r

2w'. v'~w sin
+ (2g-ca) 2 (26)

TTe emrn.hasize that as lohag as no Trr dephasing mechanisms are present, this

ratio depends neither on thi,' radii, a, nor on the temperature T. And finally,
we vote that for an elastic %ean free time of 10-11 see and a 9-factor of 10, the
adiabat'city condition (24) is &Lsatis.d for fields larger than 0.1 Tesla. The ring can
be approximated as one dimensional as long as its cross sectional area s satisfies
B#a < O0 (where Ou is the flux quantum), i.e., as long as it is almost not threaded
by magnetic flux created by B#. For B4 = 0.1 Tesla, the cross sectional area has to
be smaller than (2000A)2

.

6. Remnants of the geometric Oux in the non-adi&batic case

Our analysis of the effect of the geometric flux on transport properties of
"4 the ring has so far concentrated on the adiabatic limit. We now turn to discuss the

non-adiabatic limit. Again, we distinguish between balli:'tie and diffusive rings.
The exact solution of the balistic case was given above, in Eqs. (14)-(16) of

sect n (5), For the convenience of the reader we rewrite the solutions here,

In, (€)) eI"'M ( - an i'1-) ( (27)
-iin• and in,1(0)) -er isinico ) (21T)

"The angle , is implicitly given by

coty rota + (84Ma 2 uBfsin (a

so that for any finite value of L it is smaller than o. The corresponding eigenvaluesS,• •are
d•'•" :h2n' hi2(2n' - 1)l

, • . "E (n) = 2M . --- -T - .- - (I ± co s -y) T: IB c oG ( -y - a) (29)IThe significance of the angle -r is understood via the calculation of the expd.ctation

values of the projection of the spin onto several axes. We calculate these expec-
tation values f-,: the In, t) itate. The generalization for thi In, I) states is obvious.
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Firs', we note that the expectation value of a, is coo-f, i.e., y is the angle to which
the spin bends relative to the z-axis. It i3 then not surprising to find that the
expectation value uf the spin projection onto the direction of the magnetic field is
cc. (7- a). Two other spin projections of interest are the projection onto two di-
rections perpendicular to the magnetic field, the direction of WO, which is here the
radial direction, and that of P x ;. It is a matter of simple algebra to find that the
former is zero, while the latter is sin (-- a). The significance of the last two results
and their rel, vance for the understanding of the forces acting on the electron are
discussed in Ref. (13).

As seen from the exact solutions Eqs. (27)-(29), when the magnetic field is
not strong enough to force the spin to bend in an angle a, the spin bends to a smaller
angle -y < a. The Zeeman enecgy is then proportional to the projection of the spin
onto the magnetic field, and the induced vector potential is still of the form found
in the adiabatic case, but with the angle a replaced by1 7. However, in the adiabatic
limit the vector potential was determined only by a and the direction of the spin.
Thus, iP deserved the name "geometric". In the non-adiabatic case the vector
potential depends, through the angle -, on the magnitude of the magnetic field aad
the velocity of the electron. Eigenstates of d4fferent velocities are then subject
different vector potentials. The vector potential is no more purely geometric.

The observations discussed above in the context of the ballistic case allow
for a qualitative understanding of the nor,-adiabatic limit of the diffusive case.
Diffusive eigenstates are built out of superposition of many momentum (or velocity)
components. If the mnvgnetic field is too weak to force adiabaticity, each of these
components is subject to a different vector potential, and thus also to a different
flux. If the range of fluxes induced in the different momentum components is of the
order of a flux quantum, the energy of the diffusive eigenstate loses its sensitivity
to the direction of the magnetic field, and the geometric effects are lost,

7. How is the geometric flux related to spin-orbit coupling?

Some of the phenomena discussed in this paper, and in particular the mul-
tiplicative factor in Eq. (11) are similar to the phenomena that has been shown
by Meir, Gefen and Entin-Wohlman(17 )to result from a one-dimensional ring of
3pin-orbit scatterers. It is instructive, then, to devote this section to the relation
between the geometric phase and the spin-orbit coupling. This relation becomes
clear when the spin-orbit coupling is expressed as a vector potential. The origin of
the spin-orbit coupling lies in the coupling of a moving magnetic moment AI = '4&
to an electric field i.;. In the frame of reference in wb. ,li the magnetic moment is ut
resi the electric field is Lorenz-transformed to a -nagnetic field. If the velocity o,
the nwagnetic moi-nent is slow compared to the speed of light, the magnetic field in
the res' frame is given by 1 x -. The magnetic moment couples to that magnetic
field .' the Z,'man interaction, thus yielding an interaction term ji. = x .x
Havi!rw in mind the interaction term of an electron with an electromagnet~c vector
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potential V64, we find that P x f = el O can be identified as the spin-orbit vector
potential. When the magnetic moment arises from the internal spin of a charged
particle, as in the case of an electron, the acceleration of the particle due to the
interaction of the charge with the electric field has to be taken into account, and
this leads to a correction factor of • to the above expressions. This factor of - is
known as the Thomas precession factor.('6 )Simnilar to the geometric vector potential
discussed in this paper, the spin-orbit vector potential is, in principle, space and
spin-dependent, and its values at different points in space do not necessarily com-
mute. It is important, however, to note the differences between the vector potential
resulting irom the spin-orbit coupling and the one resulting from the Zeemai, in-
teraction with a space dependent magnetic field. The first difference has to do with
the symmetry with respect to time reversal. While the spin-orbit interaction gives
rise to a vector potential, it does not break time-re sal symmetry -- it does not
induce a :FpB term. Thus, for each eigenstate for which the effective spin-orbit
flux is -, there is another state, degenerate in energy, for which the effective flux is
-4. This is Kramers' degeneracy. On the contrary, the effective flux induccd by the
space-dependent magnetic field is accompanied by the Zeeman energy, that removes
the degeneracy. The second difference is a difference in magnitudes. Being inversly
proportional to ,c2, the spin-orbit interaction term is very small, unless it invloves
very strong electric fields. In the context of condensed matter physics such fields are
not "man-made", but rather result from microscopic molecular charge distributions.
The microscopic molecular fields are strong enough to make the spin-orbit coupling
significant. "lowever, they also vary strongly over microscopic length scales. Thus,
when the spin-orbit vector potential results from such microscopic fields, it is a
random quantity with a microscopic correlation length. As such, it is uncontrol-
lable, and usually its effect has to be averaged. This averaging gives rise to the
weak anti-localization effect.(t)The geometric flux resulting from Berry's phase, on
the other hand, is determined by the externally controlable magnetic field. It is
also worth noting that while both effects are geometric, i.e., can be expressed as
resulting from a vector potential, the origin of their geomzn tric nature is completely
different.

Finally, we note that the understand ig of the spin-orbit coupling as emerg-
ing from a vector potential is useful for a simple analysis of the subject of "hidden
momentum" that has attracted some attention in the context of the theory of elec-
tromagnetism. (20)
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NEW RESULTS IN THE THEORY OF

LANDAU-ZENER. TRANSITIONS

ROBERtT G. LITTLEJOHN
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Berkeley, California 947$0 USA

ABSTRACT

Adiabatic, theory predicts the conservation of quantum numbers in processes with a
slow time-dependence, or in systems with slow and fast degrees of freedom. When
time scales are not infinitely separated, that is, when there is a breakdown of adi-
.baticity, then there is some transfer of probability from one slow quantum state
to another. Thin transition probabiility is given by the famous furmula of Lan-

dau, Zener, and tiickelberg in the cae of coupled, one-dimensional Schradinger
equations. This paper present s agenexalization of this formnula to general coupled

Hermitian syst, ems in one dimension. It is shown that the generalization is &L
most uniquely determined by the necessary invariance of the transition probability
under three groups of transformations, namely, scaling trai, formations, canonical
transformations, and Lorentz transformastions. The final formula for the transition
probability is a simple function of the simplest quantity one can construct which is
invariant under all three of thefe groups.

The topic of this paper grows out of the theory of adiabatic processes and
geometric phases in quantum mechanics, so I will begin by recalling some principal
results in this ax-a.

Consider a Hamiltonian which is parameterized by certan parameters I1.
which axrc slow functions of time:

H = H(q,p,R(t)). (1)

'I r[e usual adiabatic 1 orem of quantum mechanics asserts that the statf,

is an approximate solution of the time-dependent Schr6dinrmr equation,

= H ((t))M(I)), (3)

where In(t)) iF an instantaneous eigenstate of the Hamiltonian,
Ht (r~t() jn(t)) = E,, (r~t)) 1.(t)), (4)

and where the phiase -((t) is given by

-Y JM &(R(t)) dl' + A(R) d' (5)
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Here the first term is the so called dynamical phase and the second term is Berry's
phase.' The differential form in the second term is a 1-form in parameter space,
given by

A = A. AdR = i(nldn). 
(6)

Thus Berry's phase is the line integral of the 1-form A along the path or history
of the system W() through parameter space, and the accumulated Berry's phase
around a closed loop is given by Stokes' theorem in terms of the closed 2-form
B = dA.

The 2-form B has singularities in parameter space, similax to the singularity
in the magnetic field of a monopole at r = 0. If the Hamniltnian in Eq. (1) hats
no particular symmetry (as we will assume), then these singularities occur on a
manifold of codimension 3 in parameter space. This is because the singular manifold
is surface on which the energy level Eý(R) is degenerate with another level, E&(Rt) =
Em(R). These singularities serve as sources for Berry's curvature form B.

However, the condition which must be satisfied for the adiabatic theorem
to be valid is that energy levels must be well separated. More quantitatively, thv
condition is

H< En (7)

which is a way of saying that thc transition frequency between the leI,, Eý of interest
and the closest other level E,, must be large in comparison to the typical frequency
component of the Hamiltonian H. Therefore if the history of the system R(Q) should
pass close to the sources of Berry's 2-form on the singularity manifold, then the
adiabatic theorem and the results quoted in Eqs. (2)-(6) will break down. Let us
therefore introduce a perturbation parameter,

"- (E. - E,)-

so that adiabatic theory can be systematically developed as an expansion in powers
of c. (More precisely, f is a typical value of the right hand side of Eq, (8), or a
scaling parameter for a family of systems.) Then we find that the results quoted
in Eqs. (2)-(6) above ,we the leading terms in an expansion in e, and that there
are higher order terms which can be worked out. For example, Berry's phase is a
correction which is of order r in comparison to the dynamicul phase.

Now let us generalize the situation, and allow the paramneters to become
dynamical variables themselves. TaLt is, let us replace R by (Q, P), whieh are slow
degrees of freedom, so that the (now time-independent) Hamiltonian reads,

If = 1(q, p;,4, P), (9)

wheae (q, p) are the fast degrees of freedom as befort The best known example of a
iHamiltonian of this type is the Born-Oppenheimer il aniltonian which is so u.seful in
molecular physics. We may allow the slow degrees of freedom to be either classical
or quantum mechanical, but, even in the case in which they tre quantum mechanical
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variables, it is often useful to treat them by semiclassical methods. This is because
the separation of time scales often implies that the slow quantum numbers are large
(as when slow and fast energies are comparable).

Therefore in either case it is appropriate to think of a classical phase space
for the slow degrees of freedom, which becomes identified with the parameter space
discussed above. This classical (Q, P) phase space naturally supports the symplectic
1-form Os = P -dQ as do all classical phase spaces, but it also supports the 1-form
for Berry's phase, O6 = i(nldn). It is geometrically reasonable that these two 1-forms
should be linked somehow, and, indeed, as shown first by Kuratsuji and lida,2 there
is an effective symplectic 1-form which is the sum of the two,

Off = P . dQ + ih(nldn), (10)

which governs the semiclassical quantization of the slow degrees of freedom. That
is, when the slow degrees of freedom are viewed on a semicla.sical level, the average
effect of the fast degrees of freedom appear as a modification of the classical sym-
plectic form. Greg Flynn and I have developed these issues in the context of WKB
theory, and explored some examples.3

We now introduce somne fixed basis 1a) for the fast degrees of freedom. By
"fixed" we meoan that these basis vectors do not depend on the slow variables (Q, P);
fcrr example, in the Hamiltonian for a molecule, we could introduce a harmonic
oscillator basis for the electronic wave functions. Then the Hamiltonian of Eq. (9)
becomes a matrix in the fast indices,

H(q, p; Q, P) -' H (Q., P), (11)

and the Szhr~dinger equation becomes a system of coupled wave equations in the
slow variaLles:

11pQP- Ebap Pp(Q)=0- (12)

For example, '%he moiecular IHaiuiltonian has the Born-Oppenheimer form,

[(-- E) ib, -4 VaP(Q)] 0o(Q) = 0, (13)

where V@p is a ia'rix 4,f potential energies. There are no gauge terms in Eq. (13)
1 :acuse we have u1.ecl a fixed basis. More generally, we have a system of coupled
wave equations which we write in the form,

D-P(Q, P) 4'(Q) = 0, (14)

wh,.re D is a matrix of operators in the slow variables. It is FBk. IiA' which we wish
to treat by semiclassic I methods, making as few assunmptions .ias possible about the
operators which appew' as the componeuts of D.

As is well known, semicla-ical wave functions are represe.nted in the classical
phase space by memis eF so-called Lagrangiawn xanifclds,4 which are N-dimensional
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surfaces in the 2N-dimensional phase space upon which the symplectic 2-formr van-
ishes. Here N is identified with the number of slow degrees of freedom. As long as
adiabatic conditions are satisfied, the WKB solutions of Eq. (14) can be developed
in mantuer which is much like standard semiclassical theory, except for interesting
issues regarding the gauge form O0 and its role in quantization. I will not go into
this here, but rather I will devote the rest of this paper to another question, namely,
what happens if the Lagrangian manifold of dimensionality N should pass close to
the singularity manifold of codimension 3? This latter manifold can be seen as the
manifold upon which the matrix D, regarded as a function of classical variables
(Qr), has a double vanishing eigenvalue, i.e., it has a corank of 2 or more.

The answer, roughly speaking, is that there will be nonadiabatic transitions
between the fast cigenstates In) and Ire). These are the so-called Landau-Zener-
Stiickelberg transitions, and the process is sometimes called "mode conversion."
The original treatment of Landau,5 Zener,4 and Stiickelberg7 was applied to the
case of coupled Schr6dinger equations of the form of Eq. (13) in one slow degree of
freedom. They derived the transition probability,'

T'= exp(- 2.A2 ) (hn)

where A, V1, and V22 are parameters of the potential energy matrix at the mode
conversion point, where the priam indicates an X = Q derivative, and where v0 is the
velocity at which the particle moves through the mode conversion region. This case

has been subject to sixty years of investigation, and is now quite well understood.
For our purposes, the important thing to notice about this result is that, it scales
as c- 1 /1 in the adiabatic perturbation parameter introduced in Eq. (8). Thu ;, we
see that these nonadiabatic transition probabilities axe beyond all orders in c and
cannot be obtained by straightforwacd perturbation methods.

Coupled Schr6dinger equations in higher numbers of slow degrees of freedom
are important in molecular scattering theory, and are still an active area of research.
For more general wave equations of the type shown in Eq. (14), special cases have
been studied in one slow degree of freedom, but almost nothing is known about the
case of higher degrees of freedom. For the rest of this paper I will concentrate on
the case of mode conversion in one slow degree of freedom, treating the general ease
indicated in Eq. (14). I will henceforth write (Q, P) for the slow variables (in italic
type), since there is only on(e degree of freedom.

Thus we consider coupled wave equations of the form,

D.#(Q, 1') Vtp = 0. (1)

The matrix D( of slow operators can be of any size, but without essential loss of
generality it can be restricted to a 2 x 2 matrix. This is because the breakdown of
adiabaticity, when it occurs, generically only involves two different levels La and
E,,,. Of course it is possible that more could be involved, and there is the very
interesting possibility of global degeneracies, but here for simplicity we will take
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the most generic case which is that of two interacting levels. Then one can show
that adiabatic transformations can be used to reduce the oririnal system to a 2 x 2
system, essentially by block diagonalizing the original 1) matu an(l leaving a 2 x 2
block on the diagonal.

Accepting this, we can write the coupled wave equations in the form,

(D, I(Q, P) D1 2 (QP) 01) =0 (17)
D1 2(Q,P)l D92 2(Q:,P) 02=

Since we sometimes think of the slow variables (Q, 1P) in a semicla.ssical sense, we will
sometimes treat the matrix D as a matrix of classical functions of (Q, 1') (not opera-
tors). Thus, 1) becomes a Iernnitian matrix field ovei the slow phase space. There
will be a breakdown of adiabaticity and subsequent Landau-Zener-Stiilckelberg tran-
sitions between fast en~erg evels when both eigenvalues of this nmtrix are small in
some region of phaise space. Our goal will be to compute the transition probability 7'
in such a case, and thereby generalize the Landau-Zener-Stiickelberg formula given
in Eq. (15).

We will base this computation on symmetry argunents. We argue that the
transition probability T must he a function of D,1) and its derivativesw with respect
to Q ald P which is invariant under three classes of symmetry op]erations. These
transformations are scaling transformations, symplectic or canonical transforma-
tions, aid Lorentz transformations. We will now explain these transformations in
greater detail.

The scaling transformations involve simply multiplying Fq. (17) through 1,y
some constant a, so that 1) -,,D. Such a transformation of course changes nothing
essential about the wave equation itself, and the transUisiaou piliiability '1' must
therefore be hiv:,rialt, T -- 2'. This implies that T must be a hoinogeneois funetion
(if degree 0 of 1),,p and its dcrivatives.

N'xt we invoke canonical or symoplec.tic invn'iaiuce. It is how well unde(rstood
that when quanituin mechitnical quantities which are ill (h(1,lciit of relpr'seilita
tion, such as energy levels cr transition probiabilities, ar, co-mlpted by sci(iclnissical
inc;il li, then the semiclassical exproission munst lb ai caanonic~d invaia nt. A iiicc cx-
a inple of this is thU Bohr--Soommerfeld or ElAI formutla for ceergy levels; the en,,rgy

levels are given in torms of classical act.ions, which are iiUvau-i;t under Cuonhoca
transformations. In the present case, w: expect T to be invariant udh:r c;tn,,ie'tlw
transformiatioiis, which na that all Q nlt 11' derivatives of 0,0p wvich occur ill
the expression for 2' nmust be expressible in terms of Poisson brackets.

The third chess of trauifrunations involves Loreintz invarem cc. If we r'epl'ce
the 2- colnpox(nit ,-Rfield shown in Eq, (17) by a constant lill,'4r tr;Li1Sicrl la6t01 Oif

itself,
4.' ([8)

wxhere Q,) is any invertilehl i2 x 2 miwxtrix (poi.sibly cimpi)leix), thea the Hnrm ictivi.y of
Ole cqiictio is is ipreservedl if we w ite

1)' t 1) . (w)



88

Obviously the transition probability cannot change under such a transformation,
se we expect the formula for T in terms of D.0 to be invariant when D is rephiced
by D' as in Eq. (19). All we require of the matrix Q is that it be invertible, but,
without loss of generality, Q can be restricted to have unit determinant, since if the
determinant is not unity, it can be made so by a scaling transfor-mation such as
those we have already considered. Thus, Q can be restricted to the group SL(2, C),
the spinor representation of the Lorentz group.

One might have thought that unitary transformations would be sufficient
to solve the problem at hand, but this turns out not to be the case; in order to
obtain the necessary normal forms which underlie thifs generalized Iandau-Zener-
Stiickelberg theory, it is necessary to invoke nonunitary trzisformations.

To bring out the Lorentz invariance more clearly, we write

L(Q, P) = BI (Q, P) -,,, (20)

where a. = (I,rE,0,eJ) is the usual 4-vector of Pauli mAtrices, so that 13s is a 4-
vector field defined over the slow phase space. Then under the transformation of

Eq. (19), the 4-vector BP transforms according to

B. - AhLBP, (21)

where AM , is a 4 x 4 Lorentz transformation. Therefore the transition probability 'I'
must be a Lorentz scalar when expressed in terms of the 4-vector 3A.

Altogether, we require a quantity which is a simultaneous Lorentz scalar and
a symplectie scalar, and a homogeneous function of B" of degree 0. We begin by
listing the simplest simultaneous Lorentz and symplectic scalars we can write down.
We use Poisson brackets (denoted by curly brackets) to guartuatce that we have a
sy•yplectic scalar. The simplest four such scalars are the following:

B1'Bp = det D, (22a)

{B",B 5 } = 0, (226)

HPM B'{B", B,) = 0, (22r.)

(1J3, B'){B., B.) # 0. (2Md)

Of these, the middle two vafish identic;,lly because of the antisymmctry of the
Poisson bracket and the symmetry of the Lorentz contraction. The first aid thiv
fourth are the simplest nonvanishing scalars with the required in-rariance properties,
of these, the first is a homog,'ncous function of B" of degree 2, and the fourth is a
homogeneous function of degree 4. Therefore the simplest homogeneous function
of degree 0 we can create with the required invariance properties is obtained by
dividing the first scalax by the square root of the fourith scalar. W1c expect that tlx,
Landau-Zencr transition probability T must be a function of this quantity.

Indeed, a more detailed calculation gives the result in the form,

T exp 2w BB," (23)
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This is the required generalizat on of the Landau-ZTmer formula, and is our principal.
result for this papei.

One might find this "der viation" somewhat unsatisfying, in that the invari-
ance principles alone do not alhlw us to determine the final functional form of the
transition probability, as displayed in Eq. (23). But the more detailed calculation
just alluded to involves using the three transformation groups we have discussed to
transform the original coupled wave equation in Eq. (17) into a standard or normal
form, which is then solved by stardard analytic methods. The invariance properties
of these transformation groups ae an important aspect of the normal form trans-
formations. Thus it is not misletading to emphasize the importance of symmetry
principles in discussing the derivation of Eq. (23).

The transtormation groups 'e have discussed here are also important in the
treatment of Landau-Zener transitions in many dimensions, including the case of
multidimensional Born-Oppenlheimer problems. We will report on such calculations
in the future.
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tends to the spatial infinity:

XX E (x°)' - (x') 2 
- (X2)

2 
- (3) 2 -+ -00.

Mathematically-minded readers will object that we are not allowed to fix, even in
the form of a limit, the argument of an operator-valued distribution. True. The
argument which follows is physical rather than mathematical, it constitutes a piece
of theoretical rather than mathematical physics.

At the spatial infinity there is caly one function which can possibly play the
role of phase. This function must be equal to

S(x) = -ez"A,(x), (2)

where e is a constant proportionality factor and A,(x) is the electromagnetic po-
tential. To see this one has to note that at the spatial infinity the electromagnetic
field is free,

8"FP =_ 41rj, = 0

and homogeneous of degree -2, F,ý(Ax) = .- 2F..(x) for each A > 0 2. The field
is free because tie electric current j_, being carried by massive particles, must be
confined to the future and past light cone. It must be homogeneous of degree
-2 because, as seen e.g. in the static case, the charge generated monopole term
dominates dipole and higher terms.

Consider a classical electromagnetic field which is free and homogeneous of
degree -2; assume that its potential is homogeneous of degree - 1, which is natural.
Let us form two vectors,

J&',,(x) x" and Ic xFW

where x is the radius vector in the Lorentzian reference frame in which the homo-
geneity condition holds.

The two vectors given above determine the tensor F,, in a purely algebraic
way. Both these vectors are gradients of homogeneous of degree zero functions:

P'jj(r) x, d~f(Z), It$VPOX.F(X)

e(x) and in(x) denote "electric" and "magnetic" parts respectively. c(x) ran be
easily calculated:

Fl,(x) x. = [j,,A.(x) - t.,A,,(x)] x"

a, [A,(x) x'] - 6"A.(x) - xdO,.A 5 (x) = O,, [x"Ax)

because
x•t0A,,(xr) = -A,,(x)

from the Euler theoremm on homuogeiious boiSctions.
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I maintain that rn(x) must be a constant. This is an argument against the
existence of magnetic monopoles which, to the best of my knowledge, has never
been put forward before. (The argument given by Dr. Herdegen ' is different.)

To see this let us calculate the Lagranglan density

dz'dx'dz2 dx3•,,FOF (3)

for a homogeneous of degree -2 field F,,, using the spherical coordinates

0 = Csinh t,

x1 = cosh 4sin cos43 ,

X' = 40 cosh 41 sin 42 sin 43,
x, = 40 cosh cos C2,

0<4.<coo, -oc < C<+oo, O•<2<7r, 0O <<27r.

These coordinates cover in an obvious way the spatial infinity we are interested in.
Note that 40 is a space-like coordinate while 4' is a time-like coordinate. A simple
calculation gives

dr~xdx'dzr'dx3 F_,PF" = 2L4{gv0 d4d42dQ (-gika,eoke + g oimo km) .

Here ax" 9X V
gik (T)-9,, 9xi 9Mk' i, k = 1,2,3,

is the metric on the spatial infinity.
The Lagrangian density (3) is seen to be a difference of two identicr' La-

grangian densities. Thus only one of them can have the correct sign i.e. the sign
which, upon quantization, would give a positive definite inner product. The part
with the right sign is called electric, the part with the wrong sign is called magnetic
and must be put equal to zero.

Now, the Gauss theorem says that the total charge Q is determined by the
electromagnetic field at the spatial infinity. In the quantum theory the charge
operator Q must have its canonically conjugated variable S(x). Thus S(x) must
have a "tail" which does not vanish even at the spatial infinity. We have seen,
however, that there is exactly one function, namely x"'A•,(x), which can play the
role of the "tail". Hence, there must exist a constant e such that at the spatial
infinity

S(x) =- -ex" Aj,(). (2)

The constant e in this equation is identical with the constant e in Eq.(I). Thfis is a
hypothesis substantiated in the next section.

3. The proportionality factor in the phase

The two cquations
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[Q, S(z)] = ie,

S(x) = -exOA,(x),

constitute together a closed theory, the quantum mechanics of the electric charge.
It is important to understand correctly the epistemologiral starcus of both equations.
The first equation is simply a theorem in the Q.E.D. which, by continuity, is assumed
to hold also at the spatial infinity. The second equation is a hypothesis; one can
give several arguments supporting Eq.(2) but all those arguments do not amount
to a proof. Here are two simple arguments, to be added to those which I have given
elsewhere .

Take the Coulomb field of the charge Q at rest:

A0 -9,Q A, - A 2 = A. = 0.
r

Its phase, according to Eq.(2), is

s(X) = -C-!Ot, = -cQ-t.
r r

During the eternity of time available at the spatial infinity,

-r < t < r,

the phase S(x) changes from (:Q to -cQ. Take now the hydrogen atom with the
nuclear charge Q and the electron charge e and assume that the radius of its circular
orbit tends to infinity. During the eternity of time available,

-- r < t < ",

the electromagnetic phase of the electron wave function,

-c f A, (x) &,

will cbange by the same amount:

-ef d t = -2eQ.

Thus the phase given by Eq.(2) changes as the true phase of the electron wave
function in an infinitely large hydrogen atom.

The phase of the Coulomb field ,

S(X) --- t
1'
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may be compared with the phase of t he wave flnct ion of a stationary state, -Et,

E being the energy of (he stationary state. Th xs S(x) looks like the phase of a
stationary state driven by the Coulomb energy eQ/r. Again, this is not a proof but
a heuristic argument supporting Eq.(2).

Equations (1) and (2) together do allow to explain the universality of the
electric charge. To be more precise, they allow to prove the fol1 owiing theorem: the
total charge of the universe is always a multiple of a single constant. To apply this
to the electron or to the proton one must be able to estimate the accuracy with
which, under specific observational circumstances, they can be considered as isolated
universes. The experiiential equality of electron's and proton's charge shows that
this accuracy is indeed extremely high.
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Abstract

The notion of magnetic charge is intimately linked with the global duality symmetry

exhibited by the extended Maxwell equations. It is easy to show that duality symmetry

is meamingful only in 3+1 dimensional space-times, implying thereby that magnetic

monopoles as fundamental particles can be postulated only in 3 ±1 dimenslions. It is

interesting to study the consequences of elevating the status of duality symmetry to a

local symmetry. This is achieved by introducing a complex scalar field in a theory that

treats electric and magnetic charge on equal footing. The new theory is a genenrdization

of the extended Maxwell theory, which reduces to thie usual Maxwell electrodynamics in

the low energy. The electric charge arises duie to a spontaneous symmetry breaking in t.i'

scalar field sector. A suitable choice of gauge makes the magnetic charge vanish.
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1. Introduction

Magnetic charge ae a concept is very interesting because of several reasons. Firstly, they

make the structurc cf classical electrodynamics more symmetric. The second reason is that

existence of a single magnetic monopole in the universe can explain charge quantization [1].

Furthermore, 't Hooft [2] and Polyakov (3] showed that magnetic monopoles are generic in

grand unified theories. In section 2, we show that the duality symmetry is meaningful

only in 3+1 dimensional space-times, implying that the notion of magnetic charge is

linked with the dimensionality of space-time. Then, we gauge the duality symmetry by

invoking a complex scalar field. Finally, in section 3, we show that the -esulting theory is a

generalization of standard electrodynamics, which reduces to the usual Maxwell equatins

when there is a spontaneous symmetry breaking in the scalar field sector. In our model,

although we start off with a theory in which electric and magnetic charge have the same

rank, we get the interesting result that magnetic charge can be gauged away.

2. Local duality symmetry

In 3 + 1 dimensional flat space-time, when magnetic monopoles are present,

electromagnetic theory is described in terms of extended Maxwell-Lorentz equations [4],

47r ,

4rF.' = (1)

4 4 (2)

and,

dp" 1 +1q-.P" dx,, (3)

___ c [I," I q, d""]r;T 3

where P"' F'Fl is the dual of the electromagnetic field tensor F", while jP and

j are the 4-current densities corresponding to electric and magnetic charges, respectively.
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It can be easily verified that under the following transformation,

F,-* F,,, cos OF,,~ - sin OfF,. 4

and,

q. -* 9, = cos Oq, - sin qm., (5)

qý + q, = sin 8q, + cosOq,, (6)

extended Maxwell equations (1) - (3) are invariant.

Is the duality rotation (4) - (6) meaningful for electrodynamics in space- times of arbitrary

dimensions ? To answer this, we consider electrodynamics without magnetic charges in

D+1 dimensional flat space-time. The action corrv.sponding to a particle of charge q

interacting with clectromagnetic fields is given by,

A ý mc f r,7_,,dz~d.- JA~d.dr - 7j--I J FFFFd)+. ('7)

where p,v -- 0,1,2 ........ D.

The equations of motion that follow from (7) are,

E', i = 4rp, (8)

F~j,j= I OEE 4r (9)
c _E c

P • I • • I- = 0, (10)

where E' == -Fo0 and PAMIA7.....PD-I = 1 ..IP -IADD+IF with i,j = 1,2,...,D

and p, v = 0,1, 2,..., D. In order to e'xtend eqs (8) - (10) by adding magnetic monopoles,

on- needs to modify eq (10) so thr' , iPD-1..,- ±1•Jl'i"4- But this immediately
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brings an asymmetry between electric and magnetic charges, because the electric charge

current density is only a (D + 1)-vector. There is symmetry only when I&'1P2.,,i

and FP"Iu are of same rank, implying D ý 3. Therefore, we conclude that duality

transformation is a meaningful symmetry only when the dimensionality of space-time is

3 + 1, implying that only in such space-times electric and magnetic charges have similar

status.

Duality symmetry (4) - (6) is a U(1) symmetry. To see this, we define complex

electromagnetic field tensor, complex charge and current density, respectively, as

S= Fp, + iF5 ,, (11)

Q q. + iq.,, (12)

and,

iP + ij, ()

we can re-write the cxtended Maxwell equations (1) and (2) as,

-J'' 4g, (14)

c

and the generalized Lorentz force equation (3) as,

dpI' - 1 [Q.G5 v + QGO'] dx, (15)

dr 2c r )

Because of (4) - (6), the duality rotat.in now reads as,

G -G F4,, = c'0GPP, (16)

Q -AQ 'eQ, (17)
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and,

PI - -= e= jd , (18)

It is obvious that the equations (14) and (15) are invariant under the transformation

(16) - (18). So far we had been assuming that the transformation parameter 0 is constant

in space-time, implying that the duality transformation is global. We wish, now, to extend

the hitherto global symmetry to a local one, by making 8 depend on space-time coordin;Ltes.

This clearly requires modification of the field equations. More significantly, local duality

transformation makes the electromagnetic charge Q space-time dependent! This is an

unusual feature suggesting a different way of looking at the concept of electromagnetic

charge. In the next paragraph we elaborate on this.

To begin with, we introduce a complex scalar field O(x) which under local duality

transformation changes as follows,

O(W) -- 0'(x) = 0() ) .(19)

In this new picture, the electromagnetic charge arises due to the interaction between

the charged particle and the scalar field O so that,

Q(x(r)) = r4(4r)) , (20)

where xP(r) is the world line of the particle and a is a coupling constant that solely depends

on the particle. Thisi way of viewing at tie electromagnetic charge is reminisc'nt of the

origin of mass in electroweak theories through Higgs field. In fact, in the next section we

will incorporate most of the features associated with the Higgs sector in the dynamics of

ci.
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We now make use of the scalar field 4 to defiae a gauge co-ariant derivative,

A, D A - 00 (21)

where,

S= a(z) (22)

From (21) and (22), it is easy to see that,

D e'G• ) --.- eO(x)'D, G :f. (23)

In (21) 0, acts apparently like a gauge field, but (22) makes it obvious that this is a

pure gauge. And, hence, the definition (21) does not introduce any new gauge interaction.

Modifying (14) to,

V'G"' = 4-)0J (24)

we find that the equations of motion given by (15) and (24) are invariant under the local

duality transformation, and these form the generalized version of the extended Maxwell

equations. In the following section, we will derive these equations as well as the equations

of motion for the scalar field from an action.

3. Lagrangian formulation

In this section, we derive ti equations of motion for fields and particles from au action.

We begin with few definitions. Let ap(x) be a complex 4-vector field that under duality

transformation behaves in the following way

a,(z) - MC)=e 9 )a(x.(25),
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The complex electromagnetic field tensor Gp, is related to a. in the following way,

G,, = (8, + ¢*)a, - (a., + 0:)a, , (26)

where p, is related to 4 according to (22). However, not all the components of a, are

independent. This is because of the definition (11) for G,. that requires the following

constraint to he satisfied,

GJ' e • a.(27)

The action for the electromagnetic field is given by,

AO --i1- G dG (28)

For particles, we label the world-lines y$(r) with latin indices ij,.. 1,2,..., and

denote the world-line and the 4-velocity of the j'h particle as yi'(r1 ) = y' and t -•

The portion of the total action relevant for the equations of motion corresponding to

particles is given by,

A, -mc f.. 1 [ + c.cjd , (29)

where cc. denotes the complex conjugate, and a, is the coupling constant (see (20))

rresponding to the j-th particle.

We now come to the scalar field 0'. Because of (19), the scalar field sector has to be

invariant under local U(1) group suggesting the existence of a abelian gauge field X, that

interacts with #. The corresponding gauge covariant derivative then can be written as,

VM=p- igxk , (30)
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wherr, q is the galige colpli"K cnlst ant.

Under hmed dianlity trnsfi)tnlion , the atelwlia, gangf.' filrd trmsfiins ;is,

\p -X + - (31
g

The action for the scalar field sector is taken to be,

A, J(/d211/. l6lr (32)

4 (* - V-(v - 2.- ' (33)

ILlid,

Sy. _ am\, X. 0,X 0 (34)

It is well known that thl -gr lrt .l , statrIf this se,'tor is Irseril,. 1y t l',,lhh SoltIti,.

{luld,

( 4M)G.. -0 (36)

It is evident from (28), (29) and (32) that A 0, A 1 and A., are iivariant ,Iod,., loval

duality transformation resplectively. Variation of the tolt•l ati 1I with r.spl,'t to tihl

particle trajectory yo' and theC cumnplex 4-vector field 0• Ivadm to thle followi ng ,l liatil IlS ,,f

lmlot ion

r, = 2c 14 (y,)G"(y,) + 0(yG),O-(Y,)1 - (37)

dr. 2
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and,

-I"(x) = Zc j(x)ayjL6(r - 1j(t)), (38)c z-r" dt

respectively.

In the low energy limit, (37) and (38) are equivalent to the usual Lorentz force equation

and ordinary Maxwell equations, respectively. This is because, in the vacuum configuration

(35), the gauge covariant derivative D. takes the form,

D. = 9; - i0,¢ (39)

By virtue of (19), under a local duality transformation the phase V' transforms as,

44w) -- V,(X) = -AX) + O(X) (40)

Since the entire theory is invariant under local duality transformation, we are free to choose

a gauge O(x) = - 0(.) so that 0'(x) = 0 becaor , of (40). This immediately makes the

gauge covariant derivative (in the new gauge) reduce to ordinary partial d-rivative (see

(39)),

(40)

Furthermore, in this gauge the electromagnetic charge of the j-th particle is giveln by,

Q0 = 7j0'( , (41)

implying that the charges for all particles are constant and are real (corresponding to

electric charge alone). It is easy to see making use of (40) and (41) that (37) and (38)

reduce to,

". (q)j Fr" ' (42)
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, =(43)

and,

= 0, (44)

where,

( = (45)

and,

im, ZQ 6(i- 4)) (46)
dt

Equations (42) - (44) are the usual Maxwell-Lorentz equations in the absence of magnetic

monopoles. Thus, in the low energy region the electromagnetic sector of this theory is

identical to the conventional classical electrodynamics.

Before ending this section, we wish to draw attention to an additional local symmetry

of the theory. Consider the following transformation,

-- 4 o" = apJ + 8,fN(D, (47)

where f is any complex differentiable function of 0*. It can be easily shown that (47) le yes

Gf, invariant, and causes the action (29) pick up just boundary terms, Thus, equations

of motion are left invariant under the transformation (47).

4. Semnary and dkcuasoo

Most symmetries in nature are local symmetries e.g. gauge symm ries in

electrodynamics and e.ectw--wea theorie-s, gen cova-u-ianc- in Einstein's theory of

gravitation, etc. It is therefore interesting to study the consequences of it local duality

-- - - .
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symmetry. Gauging this symmetry requires invoking a complex scalar field O(x), that

exhibits spontaneous breaking of duality symmetry. In the low energy limit, there is a

gauge in which this theory automatically leads to conventional electrodynamics without

magnetic ch., -es. However, in the high energy domain, one expects new predictions that

may be used to distinguish between the Maxwell electrodynamics and our model.
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We are gathered here to pay homage to the quantum phase. Out of classical
nothingness something quantum emerges.

One of the deepest mysteries in physics is the existence of two kinds of particles,
bosons and fermions. We now know that in 2 + 1 dimensional spacetime there are
also anyons, such that when two anyons are exchanged, the wave function acquires a
phase. In particular, when two semions are exchanged, the wave function changes by
a factor of i. 2 + 1 dimensional spacetime is not just less of a good thing compared to
3 +- 1 dimensional spacetime. It is homotopically different: a new physical concept,
that of "going around", appears. It makes sense to say that a particle has gone
around another. This basic fact is what makes the notion of anyons and fractional
statistics possible.

Shortly after Wilczek, and e 17-Žr, Leinaas and Myrheim, proposed the existence
of anyons, the question natural rose as to whether these hypothetical particles
can be incorporated into quantutý dield theory. The answer is yes, and the concept
of gauge potential enters naturally. One simply couples a gauge potential to a
conserved current of interest, and have the dynamics of the gauge potential governed
by the Chern-Simons term.' In Maxwell dynamics, the spactime derivatives of the
gauge field are related to the current. In Chern-Simons dynamics, the gauge field is
directly related to the current. Life is simpler because one doesn't have to solve any
partial differential equations. This is possible in 2 + 1 spactime. In any dimensions,
the current is of course a vector, the gauge field an antisymmetric tensor, but in
2 + 1 dimensions, an antisymmetric tensor is also a vector, thanks to the Levi-Civita
antisymmetric symbol.

This means that a charged particle would have a magnetic flux attached to it.
Here the terms electric charge and magnetic flux refer of course to the quantities
associated with the gauge potential we have introduced and not to the quantities
studied by Coulomb, Faraday, Oersted and their friends. Long ago, Aharonov and
Bohm told us that when a charged particle goes around a flux tube, the wave
function acquires a phase. Thus if we have particles carrying both charge and flux,
then when one such particle goes around another, the wave function acquires a
phase. Fractional statistics is just a slice of the Aharonov-Bohm effect. Thus, two
of the greatest names in physics meet two of the greatest names in mathematics.

In hindsight, this connection between Aharonov-Bohm and Chern-Simons ap-
pears so natural and so obvious that some workers in this field now think that it
was known since the beginning of time. In fact, this connection only became clear
in the fall and winter of 1983.

Over the last ten years, there have been many interesting applications using
this formalism. Here I would like to talk about a recent discussion of tunnelling
effect in double layered Hall systems. 2

In this formalism, in the quantum Hall effect electrons are coupled to gauge
potex lals obeying Chern-Simons dynamics. As explained above, the electrons then
ci -- nagnetic flux. In a special state in the double-layered quantum Hall system
(techi.ically this corresponds to a certain matrix having a zero eigenvalue so that one
of the gauge potential is liberated from being governed by Chern-Simons dynamics),
the electrons in layer 2 act like flux tubes carrying flux -27r to the electrons in layer
1. Thus, an electron in layer 1 does not see the magnetic field imposed by the
experimentalist, but an effective magnetic field equal to the magnetic field imposed
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by the experimr-talsit minus 27r times the local density of electrons in layer 2. Now
consider a long wavelength density wave such that as the density of electrons in layer
1 goes up the density of electrons in layer 2 goes down correspondingly. But then the
effective magnetic field seen by tbh electrons in layer 1. also goes up. Thus, things can
be arranged to work out very ne tly. Even as the density of electrons in layer 1 goes
up and down, those electrons can be made to believe that they are still just filling
the first Landau level, not one too many, not one too few. Similarly, the electrons
in layer 2 are also living under the illusion that they are filling just the first Landau
level. Thus, as the wavelength of the density fluctuation goes to infinity, the energy
cost of the fluctuation goes to zero. This is the physics behind the appearance
of a gapless mode: the gaplessness is a consequence of an exquisitely balanced
cooperation between the electrons in layer 1 and layer 2. The same physics is in
fact responsible for anyon superfluidity. Technically, the gauge field liberated from
being governed by Chern-Simons dynamics is now happily massless and governed
by Maxwell dynamics.

The appearance of a gapless mode is consistent with symmetry considerations.
In the absence of tunnelling, there are two separate U(1) symmetries, corresponding
to the conservation of the sum and difference " the electron numbers in the layers.
In the special state described above, the U(1) .:orresponding to the conservation of
the difference of the electron numbers in the two layers is spontaneously broken and
thus we expect a Nambu-Goldstone gapless mode.

Tunnelling, that is, interlayer hopping, corresponds to the explicit breaking
of this U(i) symmetry and thus according to general considerations, the Nambu-
Goldstone boson becomes pseudo and acquires mass.

In the present formalism, the current describing the difference of the currents
in the two layers is written as a curl of a gauge potential. When an electron
tunnels from one layer to the other, this current is no longer conserved. When the
divergence of the curl of a gauge potential does not vanish, we know that there is a
magnetic monopole lurking in the vicinity. The spacetime integral of the magnetic
flux coming out of the monopole is the :;pacetime integral of the divergence of the
current, and hence the change in the difference of numbers of electrons in the two
layers, equal to +2 in the tunnelling event. Thus, the monopole in our formalism
is quantized a la Dirac because electrons are discrete.

Dirac quantization of magnetic monopoles represents of course another mani-
festation of the Aharonov-13ohm effect. Dirac obtained magnetic quantization by
requiring that the Aharono-Bohm phase acquired by a particle going around his
string vanishes. Indeed, Coleman explains Dirac quantization by arguing in re-
verse. He describes a prankster trying to trick an experimentalist into believing
that he or she has found the fabled magnetic monopole. The prankster introduces
an arbitarily thin flux tube into the lab. The experimentalist can detect the flux
tube by letting a charged particle move around and measure the resulting Aharonov-
Bohm phase. It is precisely when the flux go;ng through the tube is such that the
monopole has the Dirac magnetic charge that the flux tube becomes undetectable.
The experimentalist can then bcc',*me very excited and proclaim the discovery of
the magnetic monopole.

Thus, we have a Euclidean 3-space filled with a plasma of mar •elic monopoles
and anti-monopoles. Wherever there is a monopole, an electron tunnels from layer
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1 to layer 2 at the corresponding point in spacetime. Whereever there is an anti-
monopole, an electron tunnels back from layer 2 to layer 1. Now we get to re-live
the golden days of quantum field theories. One of the most celebrated results of
the 1970's was the realization by Polyakov that in the presence of a dilute plasma
of magnetic monopoles the photon acquires a mass.

Th's is completely consistent with our expectation from sysmmetry considera-
tions. To summarize, we have the following "life story" of a gauge quantum. When
it was governed by Chern-Simons dynamics, it was massive. After being liberated
into a life of Maxwell dynamics, it becomes massless. But then non-perturbative
tunnelling effects made it massive again, Technically, the plasma of monopoles is
a Coulomb gas, and a Coulomb gas can be represented by a sine-Gordon theory.
Expanding the cos'na in the Lagrangian to quadratic order, one sees immediately
that the sine-Gordon field is massive.

For his purposes Polyakov did not have to exploit the fact that the sine-Gordon
field is in fact an angular order parameter. But we know that there is very interesting
physics associated with angular order parametersl Incidentally, the order parameter
is angular precisely because the magnetic monopole is quantized by Dirac. Wen
and I are thus led to make the perhaps a priori rather surprising prediction that
when a DC voltage V is applied across a double-layered Hall system, for certain
special filling factors, there is an oscillating tunnelling current. In a word, there is
a superfluid lurking in the system and hence there is Josephson-like current. Note
however that the frequency is only half of the Josephson frequency because we don't
have pairing here. We may entertain the hope that this effect will be experimentally
detectable in the near future.

I hop, to have conveyed the impression that the circle of theoretical ideas ap-
pearing in this subject are among the deepest in theoretical physics.

We encounter here quantum statistics, homotopic property of space, gauge po-
tential, Chern-Simons and Maxwell dynamics, Aharonov-Bohm phase, Dirac quan-
tization of magnetic monopole, quantum tunnelling, Nambu-Goldstone bosons, co-
operative density and flux fluctuation and anyon superconductivity, discreteness of
the electron, Coulomb gas, angular order parameter, and Josephson ocsillation. In
the end, we can attribute all these strikingly beautiful notions to the fact that when
we move from classical physics to quantum physics the complex number mysteri-
ously appears on the scene.

With your indulgence, I will end by entertaining a speculation, in fact the same
speculation 3 I made here in South Carolina a few years ago at another conference
celebrating the Aharonov-Bohm effect. The appearance of statistics in quantum
physics is one of the deepest mysteries in physics and in some ways is responsible for
the current difficulties in particle theory. As Weissklopf discovered ages ago, fermions
are nice and bosons are nasty. The self energy cf a boson diverges quadratically.
It is partly to cure this problem that supersymmetry was invented, to solve the so-
called naturalness problem. We all know down wehat glorious paths supersymmetry
has taken particle physics: from supersymmetry to supergravity to superstrings
to supermathematics to superphysicists. Might it not be possible that quantum
statistics is a composite notion? 'l the end, thre are only fermio or perhaps,
only bosons.) After al), we know that a bound state of a boson and a magnetic
monopole is a fermica (and vice versa.) There is an additional phase when two such
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bound states are interchanged. Indeed, it is possible to obtain reasonable quantum
numbers for the observed quarks and leptons. 4 Some of the theoretical ideas I listed
above are so deep that they oaght to have further consequences for particle physics
as well as for condensed matter physics.
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LIBERATING EXOTIC SLAVES
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School of Natural Sciences, lnstiitie for Advanced Siudy. Olden Lane

Princeion, New Jersey 08540, USA

ABSTRACT

The introduction of confined, "slave" fields is frequently useful as a formal device in
models of condensed matter physics; it bec-,,ncs a conceptual necessity for describing
possible phases of matter where the slaves are liberated. Here I discuss some aspects
of the fractional quantum Ilall effect from this point of view, emphasizing analogies
with phenomena in other areas of physics, particularly to the Meissner and Hliggs
mechanisms, and to confinement-deconfineinent transitions, In this application, and
in soie recent attempts to model the normal state of copper oxide superconductors,
it is important to employ slave anyon fl'.ds.

I have long admired Yakir Aharonov's style in physics: to continue to puzzle
over that which is intrinsically strange, even in domains where more jaded spirits
have lost, from mere familiarity, their sense of wonder. This child-like quality has led
him to make fundamental discoveries where few would anticipate that fundamental

discoveries could still be made, and- -as we all must acknowledge on this occmasion- it
obviously has kept him young!

In that spirit, I hope, I would like to discuss with you today a personal per-
spective on thd fascinating complex of new states of matter forming the "quantum

Hall complex," which I have developed in response to some simple pu'hles that have
bothered me for a long time. One of the puzzles, as I shall describe momentiarily,
has to do with gauge invariance. The other is broader: is the fractional quantized
Hall effect as special and isolated ias it seems at first sight, or can its occurrence he
related to other deep ideas in theoretical physics? I have found my perspective quite

comforting and informative, and I think it is different at leaust in ,:mh!lnlsis aad some
significant details from what has appeared in the literature (including my own work.)

However, I must quickly add that it in no way alters with Laughlin's hn'sic physical
picture of an incompressible quantum liquid, nor will it be wuied here to dierive new
results that could not be found otherwise'1 3

1. Critique of Laughlin's Quantization Argument

1.1. The Argument

Shortly after the experimental discovery of the integer quantized Hall effect,

tReaearch supported in part by I)OE grant DI-FU02-90Elt40542
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Laughlin 4 proposed an argument, based on gauge invariance, that explains why the
conductance is qu:,ntized. The argument proceeds from the physical hypothesis that
in the conditions wlere the quantized Hall effect is observed the electrons form an
incompressible fluid in the bulk, to show that the conductivity of the fluid (to be
defined, in a precise geometry, momentarily) must be an integer multiple of a certain
combination of fundamental constants, vtz. e0/h. With some important refinements
due to Halperin,5 this argument remains the foundation of the theory of the effect.
I would like briefly to recall its essence.

Imagine an annulus . ",ining electrons held at low temperature and subject
to a large perpendicular m; . fields, and such that the inner and outer edges are
connected by an ordinary wi, .sid held at a voltage difference V. Suppose that we
have the conditions of the quantized Hall effect, that is, by hypothesis, that within
the bulk of the annulus there is a incompressible electron fluid. This means that
there is, for each value of the current circulating around the annulus, a unique bulk
state of minimum energy. It c: be constructed, locally, from the unique, isolated
ground state by a Galilean trw.. ormation.

Now let us suppose that there is a current I circulating around the annulus,
and consider the effect of switching on one quantum h/c of flux in the void within
the annulus. At the end of this operation we have produced a gauge field, that
(for electrons within the annulus) is gauge equivalent to zero. Thus the bulk state,
assumed unique, must return to its original form. The only change that can have
occurred, is that some electrons from one edge might have been transferred to the
other edge, through the wire.

We can calculate the work done during this operation in two different ways.
On the one hand, we have transferred some charge nc through a voltage V; thus
the work is neV. On the other hand while the flux is being increased there is an
azimuthal electric field, which does work on the circulating current. One easwily
computes in this way that the work done is (h/c)I. Upon equating thesc, one finds
for the conductance:

V/1 = newlh. (1)

Thus, this transverse conductance is quantized in terms of fundaniental physical
constants.

A slight variant of this argument corresponds less well to a practical exper-
imnental set-up, but is perhaps simpler conceptually and will be useful for my later
purposes. Consider the same geometry and the same process of cranking on flux,
but now with no transverse current and no voltage. As the flux is turned on, again
some integer k numilber of electrons is transported. There was an azimuthal electric
field as the flux wa.s turned on, and thus, for a determinate transverse conductiv-
ity, a radial current. The electric field is proportional to the time rate of change of
the flux, so over the course of turning on one quantum of flux there is a definite
integrated radial current, or in other words a definite charge transfer. Equating this
charge transfer to kc, one finds the same quantization c,,ndition on the transverse
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conductivity as before.

1.. Too Good to be Truac.
The Laughlin quantization argument is so simple and beautiful, and so di-

rectly addresses the central phenomenon, that one cannot seriously doubt its es-
sential correctness. Unfortunately, it is too good. Shortly after it was proposed and
digested, experimentalists discovered states where the conductance is quantized,
but now as a definite fraction of e2 /h rather than as an integer multiple. These
states occur when the density is dose to (the sane) definite fraction of the density
corresponding to a full Landau level. The jargon here is that there is a plateau in
the resistivity around filling fraction v = p/(eB/hc); meaning that when the ratio
of density to magnetic field is close to this value the condictivity remains at the
quantized value ve2 /h. The first discovered and most robust such state (as reflected
in the width of the associated plateau and the allowed range of impurities and tem-
peratures) occurs at v = 1/3. For simplicity and concreteness I shall mainly focus
the discussion on that state, although by now quantized Hall states at many other
fractions have beea observed and there is a beautiful, extensive theory of them-in
fact several such theories.

Now we seem to be in the embarrassing position, with the preceding gauge
invariance arguments, of having proved too much. The conductance is not quantized
in integers times e2/h for incompressible bulk states, after all. What has happened?

1.3. The Microscopic Persipective

There is a successful microscopic theory of the fractional quantized Hall
effect. So before I get caried away with grandiose rhetoric about breaking and
amending gauge invariance, it behooves me to demonstrate how one understands
at a "mechanical" level how the general gauge invariance argument, which seems
so clear-cut in leading to integer quantized conductance, develops the necessary
subtleties in the microscopic theory.

1.4. Lightning Review of Incompressible Hall States

As we have already seen in our discussion of the integer effect, the quantized
conductance is a fairly direct manifestation of the existence of an incompressible
quantum fluid. That is, the electron fluid has a preferred density pinned to the value
of the external magnetic field. There must be an energy gap to deviations from this
preferred density: such deviations must be accommodated by localized inhomo-
geneities, rather than in arbitrarily long wavelength "sound waves" which-if they
existed--could have arbitrarily small energy. In the case of the integer quantized
Hall effect the preferred density simply corresponds to filling an integer number
of Landau levels, and the gap is quite easy to understand. Indeed, to raise the
density here and lower it there we must excite a particle to the next Landau level
here, which costs a finite minimum amount of energy equal to the splitting between
Landau levels, that is not compensated by allowing a hole theret.

tThe lowest energy density fluctuations actually occur at a finite wavevector. These excitations,



117

Laughlin himselfe was quick not only to recognize the physical meaning of
the new observations, but also to propose a rationale for why specific special (non-
integer) filling fractions should be preferred. Let me very briefly recall the main
points, since I shall want to build on them.

First I need to remind you of some basic results about electrons in a strong
magnetic field (here, as throughout, I am assuming that the motion of the electrons
is confined to a plane.) The energy levels are highly degenerate Landau levels,
with a density of states 2?r/1' per unit area per Landau level, where the magnetic
length I is defined through P2 eB/hc. The splitting between levels is h times the
cyclotron frequency, viz. AE = h(eB/mc). At low temperatures and for densities
small compared 21r12 it ought to be a good approximation to restrict attention
to states formed from single-particle states confined taken from the lowest Landau
level, unless there is some very special energetic advantage to admixing higher levels
(so as to minimize the interaction energy.) Within the lowest Landau level, the single
particle wave functions take a particularly attractive form if one employs the so-
called symmetric gauge, defined by the vector potentials A. = By/2, Ay == -Bz/2.
With this gauge choice, the wave functions in the lowest Landau level take the form

V•b= f()eA-'1 (2)

where f(z) is an arbitrary analytic function of z =_ x + iy, subject to a reasonable
growth condition so that the wave function is normalizable, and distances are mea-
sured in units of the magnetic length. A basis of orthogonal vectors in this Hilbert
space is provided by the functions with fj(z) = z1 . I is the canonical angular mo-
mentum around the origin, which here is intrinsically non-negative. For reasonably
l_•e 1, the corresponding wave function is concentrated in a circular ring of radius
72'1 and width V/W around the origin. It follows, by comparing the size of the region
where the wavefunction is large to the inverse density, or by direct calculation, that
the supports of these wave functions are highly overlapping.

Now let us consider an assembly of (non-interacting) electrons. Let us sup-
pose that they subject to a very small potential that draws them toward the origin,
but does not appreciably change the form of the wave functions (that is a second
order effect). Then the ground state will be composed out of the wave functions
with the smallest values of 1, consistent with Fermi statistics. It will be the Slater
determinant

V) = det{z21-}e- lAkl' (3)

where the row variable r, the column variable c, and k all run from 1 to N, the
number of electrons. Given the spatial character of the wavefimctions as discussed

the so-called magnetorotons1 can be regarded, intuitively, as bound states of quasiparticles and
quasiholes. They therefore bear a family resemblance excitons in semiconductors; however unlike
most excitons they do not easily cascade down and annihilate, because serniclassically the Coulomb
attraction between them-in the presence of the strong ambient magnetic field -causes a drift in
the perpendicular direction, and thus induces orbital motion. Of course ine kiaagnetorotonS, unlike
the quasiholes and quasiparticles discussed below, carry no net charge.

• " • .... .. ............. .-------- - --...• -I-r lJJ~JJJ[l I| 1



118

above, one easily realizes that 4,1 for large values of N, represents at (tripllet of
uniform density 2tr mnd railius 12N, with some fuzziness in ani arinuhis of widt~h
unity ntear the edge. For bater reference let xne also record the Vandernioiide identity

N

k< i:kji~

Now Laughlin's inspiration wvas to notice that the cuibe of this wave function
hats; remarkable qualities, that make it at particularly attractive trial wave fuinction
for an assembly of interacting electrons. The Gaussian factor is then not appropriate
for the lowest Landau level, but this run he comlpensait~ed by it trivial redefinition
of the length unit, which we suppose done, Then clearly one has a wavefunition

againi describing a. uniform dlrop~let ceniteredl at the origin, now with rdn~his 2N/V13,
density 27r/3 (that is, filling factor 1 /3) and fuzziness in an aninilis of width 1/ ,/'/
after the rescading. The Laughlin wave function is particularly advant agcous if the,
electrons have rep~ulsive short-range interactions, becTause it enfo rces a t riple zero ats
one electron app~jroacla'ýs anlother. A large niumber of mnumerival studies have shiovn
that it is a very good representation of the ground state watve function, ft r a vanrietyV
of replsuhive interactions.

Fronm a physical, point of view, the u )t remarkable thing itbout lIhe Laughlin
wave funlCtionL (and its various gexieralizati, us see below) is its rigidlity. It picks out.
a particular filling factor in the hulk. Deviations from this average density will have
to hbe accommodated by localizedl disturb~ances. As we shall itiake imuch moreirrs
be)low, the situlationi is aialogoims to what onle hasq for type 11 sill tircio i(Ldi hn us. whlire
miagnetic fields are not mdb iwedl in tho hulk, but can penctit rte only in localizted
vortices. Laughlin pr01opsed a form for these (listurhances. tha~t C0iii])ares very well
with numerical and exp~erimenetal datal. It. is that at utinitnal qlla~siliole hocalizedl
aroundl zo is represented by linultiplyixig the wave funlctionl Nith .1 factor that pushes
electrons aiway from z(, by adding oxa' unit of anguilar uomnicntuni inotuol thnat point.

N

qusliaSIol( Factor = 1l(zk -- zij) .(5)

This gives at densi ty deficit; t hetre is an noah iogolus biut slighltIy tin otr coillpli cat te
conistruct ion forn an exiliancet noit, the (pilasip-art irlt. There is ain import an t. y doake nl
pro( beth in prcss for the (uamsi lxioe: it is wh iat youl get 1 y adiabat h'adly switclini g
onl one! un1it of mlagnetic flux at z0 . The quiasihlv ~s are rather exot ic: they tarry
fractional charge antd fractional statistics. These piropertites can be shown dircect l
from the mlicroscopic theory." I will fore-go that lplewsmre here, however the result
will be ce'ntral to axlr litter considlerationis.

1.5. Vic Gauge Argumcnt, Rreconidecmd

With this background, let uts return to the gauge invariance atrguiment. The
second forimi ii the ax-guuint-it i1.a little "i'i- to ... , ....,, t 1 lt' onsider it.
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There appears to be a technical awkwardness at the outset, in that we would
like to work in an annular geometry for the fluid and to include some mechanism for
taking electrons in one side and out the other, whereas the simple wave functions are
for a droplet geometry. Fortunately there is a way around this that is quite simple
and instructive for our purposes. We have already mentioned that wave functions
with a high power zt times the usual exponential e-411"' are concentrated in a small
ring of radius V'27 and width V'2 around the origin Thus to put a hole in the droplet
of radius R, and produce an annulus of quantized Hall fluid, we should multiply the
wave function by a factor

Annulizing factor - f (Iz/2) (6)
k

Now you will not fail to notice that the annulizing factor is nothing but R2/2
quasiholes at the origin. A large nunber of quasiholes do literally make a (classical,
spatial) hole in the fluid! Also, since the quasiholes are the end result of adiabatic
insertion of a unit of magnetic flux-that's how we (following, of course, Laughlin)
constructed them-we conclude that adiabatic insertion of flux drills a hole in the
droplet.

Although it is somewhat off the point for this talk, it is quite interesting and
appropriate to the occasion to note that by redistributing flux that lies entirely in the
empty void within the fluid annulus, one changes the -,hape of the annulus. Thus some
of the factors of fl z in the annulizing factor could be changed to fJ(z - a). This
is a truly remarkable example of an Aharonov-Bohm type effect, in my opinion.
That is, although one has "pure gauge" outside the flux tube, by moving the tube
around one produces definite physical effects. (There is a pedestrian explanation
for this -the moving flux tube produces an electric field at distant points.) The
dynamics of motion within this manifold of quasi-degenerate states, produced by
moving flux in the void, is governed by the theory of edge excitations. Perhaps it
is even a practical proposition to produce these excitations by manipulating flux in
this way. (End of digression.)

So now we should be able to see, in the microscopic theory, how it can be
that the gauge invariance argument becomes subtle, in such a way that inscrting
a single unit h/e of flux does not transport an integral number of electrons- v'hile
inserting three units does.

It in; really quite simple and beautiful. The point is that when the power in
the annulizing factor is a multiple o' three, we can again write the wavefunction in
Vandermnonde-Laughlin form. That is (stripn•-,g away the Gaussian factors):

N N

k=l (k<L):k,i=l

N

H Z1.r(det{zr- })3
k=l

(det{z4+Li })3 ,(7
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where one has N x N determinants with row index r and column index c. Thus
to change L by one unit, to L + 1, we need only to change the wavefunction of
one electron, changing a zL to a zL+N. In physical terms, this means removing an
electron from the inner edge and transporting it to the outer edge. (Note that the
minimum occupied level has been emptied, and the minimum available unoccupied
level has been filled.) That is the sort of operation an ordinary wire is happy to do.
The remaining electrons in the annular drop can be entirely passive, and need not
re-arrange their correlated wavefunctions.

It is quite a different story if you change the flux by one unit. That does
not correspond to transport of an electron from the inner edge to the outer edge,
leaving the bulk intact. Indeed, as we have just seen, the latter operation in its
minimal form unambiguously corresponds to changing the flux by three units. The
physical operation that corresponds to one flux unit, is creation of a quagihole-
quasiparticle pair at the inner edge, followed by transport of the quasiparticle to
the outer edge. This is not an operation an ordinary wn•, will do for you. There is
an amplitude for it to occur by the quasiparticle tunneling across the sample, but
since it requires a simultaneous rearrangement of all thc electrons this amplitude
will be exponentially small. In the thermodynamic limit of an infiniLe number of
electrons, at zero temperature, it will not occur at all. Then we are justified in saying
that gauge invariance has been spontaneously violated, in the only sense it ever is:
while the gauge transformation with three flux units connects one accessible state
to another, and represents a legitimate symmetry; but the transformation with a
single flux unit, although formally valid, is useless because it relates amplitudes for
processes in our world only to amplitudes for processes in another, inaccessible one.

2. Introducing, and Liberating, Confined Slaves

2.1. Analogies of iQHE§ and Superconductivity
One cannot long reflect on the properties of the incompressible Hall states

without noticing many analogies between their properties and those of ordinary
superconductors. Let me mention a few of the most striking ones:

* In the quantum Hall system, there is a vanishing longitudinal resistivity.
Thus the current flow is non-dissipative, as in a superconductor. Strictly speaking,
this is true only at zero temperature. However, this fact does not spoil the analogy:
we are dealing with a two-dimensional system, and in two dimensions the super-
conducting transition is also at zero temperature. Indeed, the reason is the same in
both cases: there is a finite energy gap to vortex production, which leads to finite
though exponentially small dissipation at any non-zero temperature.

* In both cases, one has an energy gap to charged excitations.
* In both examples, one has rigidity against an applied magnetic field. In the

case of superconductors this is of course the famous Meissner effect, but it may seem

51 shall use this notation for the incompressible quantum Hall effect. which is a mouthful. The lower
case i is used here, because IQHE is already used to indicate the integer quantized Hall effect.
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to be a rather peculiar thing to say about iQHE states, since they occur immersed
in a magnetic field from the start, Nevertheless they exhibit a form of rigidity, in
that changes of the field away from a preferred value, pinned to the effective density,
are disfavored. Here by effective density I mean the nominal density as given by the
Hall coefficient, which is constant over a given plateau - in the analogy, we could
call this the superfluid density.

e In both cases, one has vortex-like objects. We have of course just seen this
in our discussion of the iQHE, where the quasiparticles are in some sense vortices,
and it is a famous fact for type II superconductors.

* In this vein, there is also the analogy that the non-dissipative state requires
that the vortices be pinned. The pinning is much easier in the iQHE case, because
the vortices are electrically charged and subject to a large magnetic field, so they
will be happy to make closed orbits on electric field equipotentials, (Nevertheless
some impurities must be present to make these equipotentials form closed lines, or
else there will be no plateau. Indeed for a translationally invariant system the Hall
constant must be equal to the carrier density, by Galilean invariance, and it cannot
"stick" at a preferred valu*t as the density varies.) At finite density the quasiparticles
would presumably, given their large effective band mass and repulsive interactions,
form a Wigner crystal, analogous to the Abrikosov flux lattice.

On the other hand one has the apparent contrast, that the iQHE states but
not ordinary superconductors support exotic charge and statistics for the quasiparti-
caes. Also, as I discussed in the first part of this talk, the breaking of gauge invariance
is rather different in the two cases. For an ordinary superconductor, the periodicity
in the Aharonov-Bobr,.hm type gedanken experiments we considered there would be
h/2e instead of the h/(r/3) we encountered for the v = 1/3 state. The difference is
profound: whereas in thit first case one has a higher degree of flux-periodicity (that
is, a smaller flux quantum) than might of been anticipated, reflecting a pairing order
parameter, in the later case one has a subliarmonic periodicity.

£.2. Introducing Exotic Slaves
The subharmonic periodicity in flux coexists, in the iQHE, with the exis-

tence of fractional charge, and one would like to think that there is an organic
connection between them. Such a connection will arise, similarly to what one has
in superconductivity, if one requires that the integral

charge transport phase = eqa•

= iO, (8)

describing the phase acquired by a particle of charge. q transported around a closed
loop enclosing flux ( to be unity, for a fractional charge q = c/3. This single-
valuedness, in turn, will have to be imposed if there is condensation of a field with
charge e/3. The case for an organic connection thus becomes compelling. For the
existence of fractionally charged quasiparticles supplies, on the face of it, a natural
candidate for the desired condensate field: namely, of course, the field ¢ that creates
the fractionally charged quasiparticles.
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There is a difficulty, however. If 4 is to condense one would like it to be
bosonic. But that desire appears to conflict with another: one would also like to be
able to have possibility for an electron decay into three identical quasiparticles. For
the quasiparticles are supposed to be the important charged low-energy excitations,
and this is the minimal decay channel that allows an electron to communicate with
them, while conserving charge. Clearly, if the quasiparticles are bosons this decay is
not going to be possible. One needs particles with exotic anyon quantum statistics,
in order that a state of three identical particles can have the quantum numbers of
a fermion. Furthermore the microscopic theory teaches us that the quasiparticles
are in fact anyons, and an electron can in fact decay into three of them. (Another
possibility wouid have been to have more than one kind of quasiparticle: for example,
one could reproduce the electron quantum numbers if there were in addition a
light neutral ft. mion excitation, so that an electron could decay into three identical
bosons and the neutral fermion. There may be iQLiE states with this kind of non-
minimal structure--a candidate v = 1/2 state of this kind has been described."0

However for the more conventional iQHE states, a minimalist procedure works out
quite elegantly, as we shall see.)

So we seem to have arrived at a dilemma: on the one hand we want to have
a bosonic field to create the quasiparticles, so that the field can condense; but on
the other hand we want the quasiparticles to be anyons, so that they can reproduce
the electron's fermion statistics. Fortunately, these requirements only appear to
be contradictory. Tieretical work on quantum statistics in 2+1 dimensions has
shown that a bosomc fald, properly coupled to a gauge field, can create anyons
of any type.' The way of this is done is called the Chern-Simons construction. It
works vs follows. One couplenr the field 4, using the minimal coupling procedure to
a , uge field a thr't docs not have an ordinary Maxwell kinetic energy term, but
mtett .-A only a "Chern-Si~mons" term

ALCs = U •teaf . (9)

Now one can demonstrate, without much difficulty, that the quanta produced
-"I1 have their quantum statistics altered, by the presence of the so-called

i ern-Simons gauge field a of which they are a source. And-at least in the point
particle limit, for which the concepts arc clearly defined---this change in the statistics
of the quanta is the only effect of coupling in as. This construction is therefore a
valid, and the minixmnl, way of implementing statistical transmutation-that is, the
creation of quanta of one statistics by fields with another.

I originally called fields such as a "fictitious" gauge fields. The newer termi-
nology is in many ways preferable, but the old terminology did have the advantage
of emphasi ng that the a do not introduce new local degrees of freedom. One can
in principle fix a gauge and solve for the as in terms of '. (The price for this is that
the resulting action ie complicated and no longer manifestly local.)

Although I do not intend to pause for a full demonstration here. it is es-
pecially appropiiate on this occasion to note that the Aharonov-Bohm Feet lies

" - t n:iii ,dmr ~ i i i::-"~A:"•i•
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close to the heart of statistical transmutation. For the essence of the matter is that
one finds, on solving the equations of motion for the gauge fields a, that the effect
of the Chern-Simons coupling is simply to turn each quantum created by 0 into a
source of flux, as well as charge. Indeed, on varying with respect to au one finds the
equation a

P - nf2 (10)

relating the particle number density to the Chern-Simons magnetic field. Note that
in two space dimensions one has flux points, as opposed to the familiar flux lines,
and one" can properly speak of flux associai d to a point particle. When one such
particle circles around another the wave function acquires, as Aharonov and Bohni
taught us, a phase proportional to the product of charge and flux. But such a phase
is operationally indistinguishable from the effect of quantum statistics! And that's
why one can freely change the statistics of the quanlta created by a given field V) by
coupling V) i.o a Chern-Simons gauge field.

We cau summarize these considerations succinctly as follows. As far as the
quantum numbers of charge and statistics are concerned, we can represent a field
capable of creating an electron as

where V) is a bosonic field with electric charge e/3, properly coupled as well to a
Chern-Simnons gauge field. With our conventions, the correct choice is simply n a 3
in Eq. (9).

It ha:; frequently been useful in condensed matter 1)roblems to introduce, as a
mathematical device, representations of electron fields as products of other "slave"
fields. One might, for example, represent the electron as a product of a neutral
fermion "spinlon" field and a charged boson "holon" field. As long as there is a
constraint in place, forbidding the separate pcopagation of quanta of these fields,
this is just a mathematical device. One is then in a confined ph;se, analogous to the
confined phase for quarks in QCD. What we have done here is introduce a particular
exotic kind of slave field, with fractional charge and statistics. As long as its quanta
are kept confined--as might be implemented by a Z3 gauge field eoupling doing
this is just a mathematical device. As long as we consider only scales. much larger
than the confinement scale, we will not have changed the physical content of the
theory. The procedure will be useful if added flexibility introduced by the slave
variables allows us to represent excitations or correlations that, are awkward to
describe (i.e. non-local) in terms of the original variables.

2.3. iQIE as a Modified Meisaner Effect: Liberating the Slavcs

We introduced the slave field V) with two purposes in mind: the straightfor-
ward one, that after all there ar, quasiparticle states with exotic quantmn numbers
in the iQHE, so we should have fields to create them; and the deeper one, that we
would like to have a condensatioit, or vacuum expectation value, of charge e/3 fiehls,
so as to understand the subharmonic flux periodicity in the Laughlin argument.
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Can 0 condense? At first hearing the idea might sound mad. After all V) is
a charged field, and the essence of the Meissner effect is that charged fields cannot
condense in the presence of a background magnetic field. They are, in the jargon,
frustrated. Since the iQHE necessarily takes place in a large background magnetic
field, the proposed condensation sounds to be grossly anti-Mcissner.

On deeper consideration, however, one discovers within this seeming difficulty
the central point of this circle of ideas. Let us recall how one understands the
Meissner effect, in the language of condensation. In the free energy associated with
a charged condensing field r one has a gradient term

IV,71= 10,.q - iqA.,j( 2  (12)

involving the gauge covariant derivative. Now a constant magnetic field introduces
a vector potential A which grows with the distance, and whose effect, since it is
solenoidal, cannot be cancelled by the ordinary derivative term, which is longitudi-
nal. Thus to maintain a non-zero expectation value for the magnitude of 7) costs a
free energy density which grows with the distance, and this can never be favorable.

Now in the ,nalogous considerations for our exotic slave field y1, we must
include not only the electromagnetic gauge field but also the Chern-Sinrons field a.
And then we realize, that there is a possibility for A and a to cancel, thus allowing
for the possibility of a uniform condensite. This will occur when the part of EA + a
that grows with the distance cancels, 'Imat, in turn, requires that the average flux
density associated with this combination of fields vanishes. In view of Eq. (10), this
occurs when one has the relation

-B b h __-p rp,, (13)
3 n

whene in the third equality we have taken into account thie n = 3 demanded by quan-
turn statistics, and that the quasiparticle density is three times the electron density.
Thus the cancellation takes place precisely at filling fraction v = 1/3. Whereas
the ordinary Meissncr effect for a superconLductor tends to exclude magnetic field,
the modified Meissner effect taking into account the statistical transmutation, ex-
cludes deviations of the magnetic field from a fixed multiple of the density (and,
of course, vice versa). Deviations from zero field in the superconductor, or from
the desirable density in the iQHE, are accommodated most chcaply by allowing
inhomogeneities-vortices in the first case, quasiparticles in the second. In fact the
quasiparticles are vortices too-but ini the Chern-Sinnons field, not the electromag
netic field. Only by allowing such inhomogeneities can one preserve condensation
in bulk, which requires the integrated form of Eq. (13). That is the essence of the
modified Meissner effect.

Another feature of the situation is that tile condensation of V' into a Higgs
phase entails, as a consistency requirement, deconfinement of its q(l1nta. Our eCi-
not, after all, confine vacumo quantum numbers! Thus the two purposes which
motivated us to introduce the confined slaves, namely on the one hand to have
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fields which described the exotic quasiparticles once they are liberated, and on the
other hanl to have fields capable of condensation, axe intimately related in their
realization.

2.4. Past and Future
Well that concludes the main story I wanted to tell you today, and I think

it is a very nice story as far as it goes. I hope I have conveyed how the concepts
of fractional charge and statistics, the Chern-Simons construction of the latter,

and the modified Meissner effect ineluctably conic together in a coherent account
encompassing both the iQHE and ordinary superconductivity. It does justice, I
believe, to the 'paradoxical' nature of gauge symmetry in the fractienal quantum
Hall states that one encounters upon taking the Laughlin quantization argument
seriously, as we discussed above,

This story has both a history and, I hope, it future. I'd like briefly to comment
very briefly on these, although you should be warned that in neither casc do I speak
with authority.

Girvin" stressed the analogies between superconductivity and the iQHE very
early on, made pioneering attempts to construct a consistent, unfrustrated order pa-
ramcter, and recognized the importance of the statistical gauge field in this regard.
Girvin and MacDonald"2 made al important connection to the microscopic theory.
The early ideas were refined and extended in important ways by Zhang, Kivelson,
and Hansson,13 and by Read.1  There is an interesting discussion of this body of
work in Stone's book.2

In previous work, as far as I know, integrally charged condensates have been
emnphasized. For example in the approach of' 3 one couples the statistical gauge field
to the electron field to make it a "'super-fermuioii"----thouglI created by a bosonic
field¶. This can be done with a Chern-Simons coupling n = 1. With this value the

3.
modified Meisner argunient gives the samne relation between real magnetic field and
electron density as was discussed above.

In this talk I have discussed how one is naturally led to the fractional charge
condensate. Of course the existence of such a condensate does not contradict the
existence of an electron condensate, but postulates additional structure. I think
there are significant advantages to this point of view. For example the quantiza-
tion of n in integers is required, for consistency, when one considers carefully the
quantization of the Chern-Sirnons theory on topologically non-trivial surfaces. The
appearance of integers multiplying the Chern-Sinions term, and more generally (for

¶iThe notion of "super-fermions," tiat is of particles for which the wave fonction not only changes
sign-that is, accumulates phase n -but accumulates phase 3w, say, may appear incoherent at first
sight. After nil, there is no denying that rW cv e 1. However, it does have a concrete meaning
operating a&"ong states within the lowest Landau level. For in that context the relative angular
momentum imust be positive, and the effect of boosting the angular momentum by two units is to
change the spectrum of allowed values, szt that time angular ,nomncotum Ihs to be aft leet three.
Without the positivity restriction on angular momenta that operates in the lowest Landau level the
allowed spectrum would not be altered, and the notion of "super-fermion" would be quite dubious.
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iQHE statcs at higher levels in the hierarchy) matrices of integers describing several
"coupled Chern-Sinions theories, plays a crucial role ill Wen's theory of edge states.i
Thus both for undiertanding the accuracy of the quantization in the FQHE in a
fundamental way, and for connecting ideas about the bulk state to the successful
theory of edge states, it is important to have integcrs.

Having identified something like an order parameter, one might like to con-
tinue the analogy with superconductivity by considering inhomogeneours situations,
response to external fields, and so forth, by solving classical equations using an effec-
tive Lagrangian, in the style of Lutdaur and Gimzburg. In attempting this, however,
one must recognize that the fields iivolved in such an effective Lagrangian cannot
he regarded ats normal local 2+1 dimensional fields, because they shouhl only create
and destroy quiant;it in the lowest Landau level (which makes them effectively 1+1
dlimCnsional).

As a concrete example, one would like to use an effective Lagrangian to de
scribe the motion of quasiplrticles in re.spmnsc to slowly varying external electric
urd magnetic fields, or their s('aLttering at small inoen11itun. Indeed these miost bav
sic processes involving quasiparticles are perhaps the most frndarnental observablle
prucesses govwrielCd by their exotic charge and statistics, so one would like to have
an explicit description of them. Even ill the Simplest case of the integer quantized
Hall effect, where the quaasiparticles are the electrons themselves, it would seenI that
ai more direct approach to calculating charged lrrticle drifts in thir lowest Landau
level is alppropriate, andl this lis quite a diffoerr't flavor front solving sirImlh' (ClrSSiItl
field equations. This suaject needs nrorc, work. "it

2.5. Coda: Quesation of Statistics in Spin-Charqc Scparation
There are several indications that the marrmal state of the Cu() high temper-

ature sHpercorductora, for tIe dopings at which they exhilbit rol~ereonductivity, is
an ;uiomalous meta. Perhaps tir most striking omonraly is thie linear de(lridence of
resistivity on tm'ierrrture, down to quiti low temperttmires. This is diffi'.rnit from
what is expeeted for a F'ermi liquid, even after all win g for vwrimis pssil lr i, .plli-
,atinrrs.m7 '1 On the other hand there dchilitely tre iriiclatiomis that it Ferrmi surrfarec
exists, at least in thit seise trat. there is a signifie'ant singiilarity ill the dmesity of
states (imnaginamry part of the clectuor Green frurrtion) at at surface in irlriueistirarr
space. IIowever, the size of the Fermi surfaacc •prer,,,ars in rSmme ca ssns of ,e•xjneioirts,
particularly lh•,titiissi, i, to c roiughly aiorinal; wherens IIall cir 't nr asrurnijierits,
if imtrerlprcted as reflecting FeinrIi suInfroC armtrim .1ers, give a very diffnrivit picture.
Althou ngh thir, s experialator its are riot entirely straightforward to iit 4 rprot (1,caulse
the Fermi liquid theory fails to describC their tehmeCrattur ilC dejun iemc correctly,
tie foundlationas of the analysis are inIsecIrre), 01n the face ,Of it they s,,1ri to ildicate
a suimall Fe!mni Arn'face for small doping, with positive (hole-like) carriers. Trhs they
servn to reflect not the eatire electron density, hurt rather its deviation froin hlalf
filling.

Motivated by these arid other experimuental results, whiith appear to require
a 2 compoaient modml, arid by experience with 1-1 d Iimcmn:ional models, Anderson
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and others have proposed that the anomalous state is characterized by spin-charge
srparation, that is the existence of separate spin and charge degrees of freedoni-- -

spinons and holons. Electrons are supposed to decompose into these more basic
objects. This is known to happen in 1+1 dimensions, even for very weak coupling.'5

In 2+1 dimensions the situation is much less clear. The infrared singularities that
drive 11-1 dimensional metals, even for small coupling, to qualitatively different
behaviors are substantially weaker in 2±-1 dimensions.

Nevertheless one is motivated by the phenomenology, by the 1+1 dimen-
sional models, and by the "existence proof" provided by the foregoing analysis of
the iQHE, to consider the possibility that in the CuO materials the transition to
the normal state involves a liberation of exotic slaves. If there are states of mat-
ter in 2+-1 dimensions wherein electrons do separate into spinons and holons, the
question arises what is the statistics of these particles. The most ibvious assign-
n.'ilt is boson statistics for one, fermlion statistics for the other,"t On closer exam-
ination however this assignment appears to lead to severe ulifficulties," '['he Bose
condensation temperature tends to be very high, and if it occurred it would lead to
striking effccts, none of which are observed. My colleagues and I suggest instead2'
to consider the piossibility that both species ire half-ferimnions. This avoids the Bose
Condensation lproblhi'. Recent work on gauge theories!2 inspired by the Halperin
Lee-Read" theory of the compressible Hall states near v = 1/2 suggests another
advantage of assigning fractional statistics to the sp)inOns and holons, namely that
they lead to a pattern of anomalous behaviors at least qualitatively suggestive of
CuO plhe'nomenology, The,re is a Tioitnind Fermi surface, but wi one approaches the
Fermi imunientiun there is a severe renormalization of the effective' muss, so that the
singularities and temperature dlo'ndences are not of the form predicted by Fermi
liquid theory.

A (detailed account of this work will Im appearing shortly. I wonited to mention
it here as it is so t'hwely allied to the ideas discussed in the body of the talk, tood
perhlaps gitns some (crelibility from the association.
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Abstractf

Evidence is presented for the existence of persistent currents in
normal metals. It is shown that even in the mnesoscopic domain, quantum
effects may be very important. Invistigations of the magnetic properties of
metals in this domain have shown Ahavonov-Bohm effects that suggest that
persistence currents should exist in normal metals. I1. is shown that
experimental verificrLion of the existence or non-existence of these currents is
ve-ry difficlt and not resolved at this time.

When you're in the laboratory trying to measure a quantum effect,
you are often faced with many problems that theory may not have
addressed. One interesting property is the possibility of persistent currents
in normal metals. Since the technology is extremely advanced, no one can
do these experiments without help from a large number of people. I wish to
thank all those who have contributed to the efflrts that made the results
discussed here possible.

Theorists must understand that experimentalists can be very helpful.
Just tell the experimentalists, in a way that we can understand, what it is
you'd like to know. For example, consider a condensed matter system of
some really macroscopic size and ask how to calculate ,he magnetism and
the transport properties. We all know from classical physics how to do that.
Then take the thermodynamic limit, do onsemble averaging over all
possible scattering sites because, there are many of them there, and
calculate an average magnetization or susceptibility or electrical resistivity
for that material. But you know if you were to 4examine sonic small sub-
section of that sample, say a cube of atoms threo on a side, twenty-seven
atoms total, and ask what the magnetization or the transport properties are
of that, your classical approach should break down simply because the
electron's a wave, not a billiard ball. You' would have to invoke quantum
mechanics. Now most experiments, until recently, could not get down to
that kind of size scale.

The main discovery about six or seven years ago is that you don't have

to go to the very small scale to see the quantum effects. There is another
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intermediate range, called the mesoscopic range by some, where the long
range space coherence and the wave function provides you with ample
quantum mechanical sensitivity to study. There is a correlated behavior
over a length scale associated with the -ystem. This range, called the space
coherence length, is the distance an - lectron can move in a condensed
matter system without losing the phase of its wave function. That distance,
surprisingly, can be as long as twenty microns At IBM we arc producing
circuits of the future that are at the tenth micron level. They're going to be
in your computers someday soon, So we're talking about systems that show
extreme quantum effects, when cooled to low enough temperature, that are
hundreds of times larger than the micro-circuits that we're building today.
This is very exciting. Yet, they contain billions and billions of electrons, so
we're really not dealing with microscopic systems.

Three years ago I reported on the state of research at that time. What
was reported then is now an old story. At that time we used the then
current state-of-the-art lithography to build a metallic system. We made a
lithographic ring of gold about 1.86 microns in diameter, and did a four-
terminal electrical resistance measurement. This ring was gold evaporated
out of a relatively crummy, non-state of the art evaporator, using state of
art lithography at that time.

When that system was cooled to low temperatures the behavior
surprised many people in the community. What was discovered was that
the electrical resistance that you measure as a function of the magnetic field
oscillated periodically as the field was varied over 0.1 to 0.2 Tesla. That was
a clear manifestation in some minds of an Aharonov-Bohm effect, and
indeed that seems to be the most reasonable explanation.

There is another surprising feature that shows up if we use a half
ring. If you look on a larger magnetic field scale, there additional
fluctuations. The oscillations previously discussed occurred as the field was
changed over a fraction of a Tesla. The new oscillations in the electrical
resistance become apparent in the range of 0 to 8 T. These oscillations are
weak and just visible on top of the previous oscillations if we use a complete
ring. If we break the ring anid only study one-half, we only see the new
fluctuation effects.

Standard solid state physics textbooks say the electrical resistance of
a piece of gold as the function of magnetic field is a smooth curve. That is
what you should be teaching your graduate students. For years people
Ithough .. these + osc llations wa a iiink effect-: however, when the theorist and
experimentalist finally learned to talk to each other, what we finally
understood was this also an Aharonov-Bohm effect. We can see that this is
an Aharonov-Bohm effect by asking what would happen in a disordered
system.
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There are an infinite number of paths that the electron might take,
but if we look at the intersection of any two paths that form a closed loop,
and apply a magnetic field, the local probability of finding the electron at
the intersection is a fluctuating function of magnetic field. This is caused by
the interference phenomena associated with flux through that path.
Obviously there are paths enclosing a wide variety of areas going from very
small to essentially the sample size. So what you see is what many theorists
have called an electron inferrogram. The conductance as a function of
magnetic field fluctuates periodically, It's very reproducible, you can make
measurements a month later and get the same pattern.

If you make another identical sample, you'll have a completely
different pattern. The only universal thing is the amplitude. The amplitude
is on the order of the electric field squared over the magnetic filed. In these
experiments, the sample size has to be of the order or smaller than this
characteristic phase coherence. The nice thing about these universal
conductance fluctuations is we can measure the phase coherence length
relatively accurately. Using a bit of theory, take an auto correlation
function, then the half width at half-maximumn is a measure of the phase
coherence length. For a typical sample it is about 1.3 microns.

This is still an old story. We've been changing our experiments and
asking new questions. What about the magnetic properties or the small
system? I've always had a very small problem, which is that in our
textbooks we teach that the magnetism of metallic systems is a combination
of polyparamagnetism, which describes the coupling of electron spin to the
applied magnetic field, and Landau diamagnetism, which describes the
coupling of the orbital motion to a magnetic field. In this regime all the
electrons are phase coherent, also what does the Landau diamragnetism do
as a function of field in a phase coherent regime? Is it a number, or is it a
fluctuating quantity that might have some Aharonov-Bohm effect? That's a
question which we spent quite a lot of time trying to answer. A slightly
different version of that is if you build a ring, then you're supposed to get
persistent currents.

'The basic idea is that there will be a current started as you put on u.
gauge flux to the center of a metallic ring. The characteristic current
circulating around that ring will he an oscillatory function of magnetic field,
or flux threading the ring. Thc period of oscillation will be Planck's constant
divided by the electric charge Whe.

The theory is simple. Write the Hamiltonian for that system and
consider the energy of each electron in each level to calculate the current
carried by each of those states. This is just the derivative of the energy with
respect to the flux. The magnitude of the current is the electric charge times
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the velocity in that state divided by the path. In an ordinary condensed
matter system, the electrons occupy different levels. So if we have 1012 or
1013 the electrons, as we add them, are going to go into different
Eigenstates. The very last electron added goes into the Fermi energy.

In a closed system of an annulus, all of the extensive properties are
going to be highly periodic in the gauge flux. In particular, the energy levels
are going to show a 21c periodicity for each flux level, the energy of the first
electron will be an oscillatory function as will the energy of the next
electron. In principle, the total energy oscillates periodically in flux, but this
oscillation changes slope for each electron that you add. To first order, each
new electron cancels the previous electron so as you work your way up this
ladder, almost every contribution to the current is canceled by the one below
it until you get to the Fermi energy.

In principle the persistent current you will get in this one-dimensional
system is only eVdf with eVf being the Fermi velocity corresponding to the
last electron you added, and therefore, its sign,. and I is the coherence
length. The response in a magnetic field can either be positive or negative.
It only depends upon whether there is an odd number of electrons or an
even number of electrons in your sample.

This is an Aharonov-Bohm effect. To this audience, that's probably not
surprising, but most audiences believe that this is just Landau
diamagnetism. What does this have to do with the Aharonov-Bohm effect?
The Aharonov-Bohm effect is in the transport measurement. You send an
electron in at some energy, it has two ways to get around the system, a
displacement advances the phase along one path differently than along
another path. When you re. combine the waves, you can get a phase
difference, which gives you pattern of constructive and destructive energy.

You can analyze it another way. Break a ring into two parts. In part 1,
the electron takes path. we denote by (1). Along this path the phase change
is (P I h Aedl. Along •he other part we indicate the path by (2) and the
phase change is 92 = t2 Aedl. To get the phase difference, subtract those
two phases. One of the paths is oppositely directed, so we must add the
phases.

To show there is a persistent current, draw an imaginary dividing
line. Start an electron at that line and say it's going to go all the way
around the ring, but divide it up into two separate paths, and then if you
sum that up in terms of an Aharonov-Bohm effect, you'll see that the total
change in phase is (PI + (p2. Take a piece o.gold that can be broken. .pen and
measure its electrical resistance. Now put it in a loop and it carries a
persistent current. A persistent current to the age of the universe, not for a
nano-second or a pico-second.
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In the real world, one-dimensional rings cannot be built, at lc ast not
that have low disorder. We really have a multi-dimensional systen. where
the line is 300-1,000 Angstroms thick. That is, lines are many electrons
thick and many electrans wide. You might expect that there would be a
multi-channel effect that would enhance the current. In the systems we
,ave built, the electron scatters many times as it goes around the ring. It
may scatter hundreds and hundreds of time before making one complete
revolution. In that case the transit time for an electron to move around is
basically a diffusive time as opposed to a ballistic time. The current is, in
principle, thought to actually decrease because of the slow transit; whereas,
in the ballistic case, if it doesn't scatter at all, the total current should be
enhanced by the number of independent channels that you're carrying. So,
in a real system you might expect some very large currents.

Experimentalists have learned many things. in the last twelve years in
condensed matter physics about the space coherence lengths. What should
be obvious, but may not be to some, is that the chý racteristic distance which
the electron moves without losing the phase information in its ware
function can be shorted I- the electron-phonon interaction, the electron-
electron interactions, ai 2 interaction of the electron with any magnetic
impurities. Another criteria which all experimentalists have to be aware of
is that there is a broadening of the energy of the wave packet due to a
thermal diffusion process. We call this a dephasing length. This dephasing
is due to a finite temperature effect. So you have to have this characteristic
dephasing length along the perimeter of your ring. All this translates into
typical ring sizes that. are going to be on ýhe order of 1 -- 10 microns, and
temperatures which must be milli-Kelvin.

We need to use a state of the art, or very close to state of the 'urt,
SQUID detection system. SQUIDs are just very sensitive detectors of
magnetic field. They consist of a superconducting circuit which surrounds
the ring under study. We apply an external magnetic flux, and if there's a
signal, the signal will be coupled directly into the SQUID. Skipping the
engineering details, you manh' this circuit such that it's a gradiometer
where you wind two identical cniC but in opposition to each other. Then if
you apply a unifori. field, witb out a sample in your SQUID coils, you'll get
no signal coupled ii. your SQUID. Now the kind of sensitivity that I'll be
talkling about today, rpfers to the input terminals of the DC SQUID. We are
able to resolve changes in flux to a part in 107 - 108. of a superconducting
flux quantum. One-tenth to one-hundredth of a micro-flux quantum at low
temperatures, with good signal averaging, is easily obtainable with these
state of the art systems. Using modern lithography, we can make rings
whose dimensions Lre on the order of 1-5 .im.
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If we put a gold ring inside a niobium Pick-up quill that's part of a
SQUID circuit, how big should the persistent current be? Again we were
surprised. This is another one of the thing fýthat should make you
extremely doubtful about the existence of persistent current. If the
calculation is done ait temperaturecý 0 K using all the simple theory that's
been out t~here for about five years, theory predicts a persistent current of
2.2 x 10-7 A/i where i is the coherene' length in microns. In a one micron
perimeter ring, the size of the persistent current should be 2ý x 10-7 A.

A well equipped laboratory can routinely measure 10- 15 A in
transport experiments. This can easily be done with room temperature
electronics and a little signal averaging. So it would seem that we can easily
measure the persistent current in the ring. It is eight orders of magnitude
bigger than what I normally measure. It turns out not be so easy after all;
this is not an easy experiment. To see this, calculate the coupling of that
ring to the detection system. The mutual inductance of that ring is about a
PH. Now 10-7 A times a mutual inductance of 1 PH gives about 10-19 Volt-
sec. That's about 10-4 to 10-5 of a superconducting flux. It's a small signal,
even though the magnitude of the current is large.

What we actually do in the experiments is build these fantastic,
highly versatile SQUID detectors. We then put many different samples, at
many different locations in these detectors. For example, we used a gold
ring that's about 1.4 by 2.6 microns, square as opposed to round, Cool these
samples to low temperatures and collect the data. Ideally, if' there was no
signal coupled in, the measured magnetization as a function of applied field
would be a flat line since the magnetometer is working in a balanced mode.
Lithography ;! isa L''tZ, so there is some imbalance which can be

z-i ' fýŽnwallv cinoved from the data. The data we obtain is a fairly
straight-looking pattern, but the second order of correction looks like a
cubic. That's just the response of the environment. There is no signal on top
of that.

Simultaneously, while sweeping the DC field, we use AC techniques.
As those of you who are experimentalists will know, you can get much
better signal to noise by using phase sensitive detection. What we do is
apply an AC Field and detect the AC response. We can use this to measure
tiie fundamental response, or the next harmonic. Applying the AC field
gives the primary, the second harmonic and the third harmonic respotilse.
That' is done simultaneously in this experiment, so we can get three of
them at one time.

Do a little bit of signal averaging and background subtraction to get
the fundamental signal. Subtract out a quadratic and what's left over is the'
reduced data. Fourier transform that to get a signal that is exactly like yol
would expect: an oscillatory signal based on the inside and outside
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diameters of that ring. This happens to be true for all our samples. If there
is an h/2e signal, which I call in these experiments a higher order harmonic,
it should be down by roughly 1/exp in these experiments. It is at least that
low.

There's another bump in the reduced data that everybody points to.
Anybody familiar with digital signal processing, that is a data on a finite
interval, knows that once you subtract out a quadratic and a linear and a
constant, you force the power in the Fourier transform to go to zero because
you've subtracted it out. Then when you ask your computer to fit Fourier
components to this, false bumps show up. This is really the tail of a signal
from a very high frequency, most of whose power we have subtracted out.
This is the result of data on a finite interval. It's instrumental; it has
nothing to do with physics. If I could take field data over a bigger field scale,
I would push this intensity towards zero.

If you then take a look at the second harmonic, by subtracting out
only the linear part, this is the kind of data you get. That is about as good
as one can get for oscillatory work. To get a better signal, use a bigger ring,
but the signal dies quickly as the temperature increases so there is not
much to study.

To try and prove there is a persistent current, we first study the ring
and collect our data. We then warm the ring and etch the gold out of the
ring. That is we just get rid of the gold, leaving everything else untouched.
Re-cool the system and look at the size of the signal in the region where we
found the hie signal as a function of temperature. So we have the data for
an empty magnetometer and the data for a filled magnetometer. There is a
difference, so it looks as if the signal is real.

To get. a good signal to ~ioise, over a sweep from plus to minus thirty
gauss, takes twelve to twenty-four hours. The experiment can be stopped at
any point, held and it doesn't decay. The signal is persistent in that sense.
We have an oscillatory magnetization whose average value, which I detect
over long time scales, is unchanging. Tlhis hasn't been done for the age of
the universe, nor for 107 seconds, but over relatively long laboratory time
scales, it is constant.

The theor1ists wa,_nt to comnpare this to the. theoretical result. Theory
would say that if you assume some simple exponential dependence on the
basis of the thermal diffusion smearir'g the wave packet, it should be
posa~ible to account for the now ballistic system, the diffusive system and
calculate the amplitude of the hWe signal.

The experiments at 5 milli-Kelvin have a signal that's about two
orders of magnitude larger than theory. We're not measuring 10-7 A but we
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are in the 10- 8 A regime. We find that the diffusive correction is not there.
We can also find the sign of the effect; that is, determine if the response is
paramagnetic or diamagnetic. A lot of people, still believe that this is a
diamagnetic phenomena, they would expect the signal to be diamagnetic.
Theory says 50% of the sample should be diamagnetic and 50% should be
paramagnetic in the response to near zero field. Our two successful
experiments so far indicate that the effect is paramagnetic. Recently,
theorists have been working on this, and believe this discrepancy is due to
an electron-electron interaction. I'm not going to go into that. However,
electron-electron interaction does not seem to be a likely explanation since
conventional theory does not allow any mechanism by which you can
explain discrepancies which are a factor of 100.

Before we had published our work, Laurent Levy, Kerry Dolan
Dunsmere, and Ellen Gushiah published a paper in which they too were
interested in persistent currents. They had built what I call a hammer type
sample, it's ten million copper rings. Each ring is about 0.5 microns by 0.5
microns on a side. There are 10 million of them, so if you can't measure one
with one ring, maybe you can measure 10 million, Well, I set you up to
believe that if there's a signal in this, it's going to be in an Aharonov-Bohm
effect, hle. And that's what every theorist thought. But when they published
their data, they got a different signal.

Both the second and the third harmonic response functions ought to
be oscillatory in the magnetic field. The phase relation here is zero, so it
would just be 0' different. The second harmonic should be anti-symmetric
about zero, so it should he zero at zero field. The third harmonic and the
first harmonic should be maximum or minimum at zero field. When they
anal, zed their data and extrapolated to T= 0, they obtained an unexpected
result. The signal was periodic, not an hle, but in hl2e. The size of their
current correspondek; to 3.6 x 10- 10A per ring.

Is that an Aharonov-Bohm effect? Well, I don't know the answer to
that. There's been a lot of words said that this h/2e effect is just a higher
ordr r effect. In fact, I've been worried about some of the interpretations.
What we've been doing lately is studying arrays of gold rings, but now we've
developed a better detection system, I don't need 10 million, only an array
of 200. Using lithography, the experimentalists can actually tailor the
detection system so tnhat each pik-up quill . .ts around one ring. Make the
pick-up quills as small as needed, or the rings at big as needed, and use
lithography to determine the optimum detection configuration. The beauty
of our experiments is that we simultaneously can apply a magnetic field to
both sides of the sample. The other side doesn't have any rings in it, so you
can get rather uniform fields over the sample. Then vary the magnetic field
continuously. We find a peak right in the vicinity of h/2e and some
structure in the vicinity of Ale. However, the h/2e dominates.



137

In going from one ring to 200, there is a phenomena that's occurring,
something is bigger. In our original single ring experiments, we could
determine the h/2e effect was about 1/exp down from the W/e effect. But, it's
only true that on average. Every ring has a different number of electrons, so
the hie effect is only going to grow like the square root of the number of
sample. If there's something more correlated, like an h/2e effect, the
correlated signal is going to grow like the number of samples. For 200
samples you expect the hie signal be about 10 times larger, and h/2e signal
to be 200 times larger than that for a single ring. Those are the
experimental results, roughly. We find the hie signal is smaller than theory,
and the h/2e signal is about what is expected.

Although Levy's experiment was originally published as in perfect
agreement with theory, it's now generally recognized that signal that he
was measuring is about one to two orders of magnitude larger than they
should be measuring based on the current theory. Our experiments also
give the 1-2 order of'magnitude difference. So we have two independent
experiments both giving something much larger than they should.

Recently A. Benoit and his colleagues at CNRS-Grenoble have been
studying the persistent current in a single gallium arsenide ring. This is a
beautiful experiment (unpublished at the time of this lecture). This is where
the foundations of quantum mechanics is going to really learn something.
He, first of all, builds a ring with four terminals out of gallium arsenide in
the ballistic regime, so the electron has no scattering. Then he can measure
the hie oscillations and Fourier transforms them to get the power spectrum.
The electrical resistance oscillates periodically in both an hWe and about
lIexp down, on W&2 component.

This is in the transport, no new news here. But now this is gallium
arsenide, so he can put gates on top of it and deplete the electrons from the
leads,. He then isolates it. and builds around the same ring a D)C SQUID
system, and now measures the magnetizntion of that isolated ring. Using
the DC SQUID he finds a current going around in the isolated ring. He sees
an h/e signal. The signal to noise is weak, but none of these experiments
have good signal to noise. The beauty of this experiment is that now you can
couple the ring to the outside world by taking the voltage off the gates.
When that is done, this signal goes away. I think there's something
significant there for the foundations of quantum mechanics and the whole
idea of measurement theory.

That's about all I have to say. I just wanted to sort of summarize by
saying that the mnicro-electri city inidustry is now providing samples where
we can start testing some of the more fundamental predictions of quantum
mechanics.
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BLACK HOLES AND QUANTUM GRAVITY



EVIDENCE FOR A MASSIVE BLACK HOlE IN TIllE CENTER OF OUR GALAXY
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ABSTrRACTr

Use of waveeolgths other than the visible have recently allowed astronomers to study the
center of our own galaxy, until now hidden by interstellar clouds. Tlhe densities,
ionization states, temperaturcs and velocities of gases and dust near the galactic center
toll us the radiant cnergy present and that the gravitational field corresponds to a black
hole of 2-3 million solar masses at the ;enter. More recent neasurenments of stellar
velocities in the region confirm this evidence. lHowever, precise identification of whirli
object may correspond to a massive black hole and explanation of otior phenomena
observed in the galactic center arc still matters of delate.

Our galaxy has many massive dark clouds composed of common molecules and
dust. So many clouds lie between us and the center of our galaxy that we obtain no
detectable visible light from the galactic center, and hence until rather recently
astronomers weru not able to study this important region. During the last few decades the
use of radioastronomy, improving technology in the infrared region, and the availability
of spacecraft to measure x-rays and gamma rays have all given us opportunities to detect
radiation from this region and as a result we now know much about it, even though there
are still puzzles.

High resolution radioastronomny has identified a rather powerful point sourcerI of
continuum radiation rather close to the dynamic center called Sgr A*. In addition, there
is an oval shaped ring of fast moving ionized gas 1,'4 correspo~nding to the projection of a
circular ring rotating at approximately constant velocity around Sgr A* and at a distance
of about 4 Y light years. Outside the ring are molecular clouds of varying density but
generally in the range of 104 to 10& molecules per cubic centimeter. Inside the ring there
are blobs of ionized gas of similar density, also regions in which almost no gas exists, and
at least one sizeable atomstic gas cloud. Analysis of the velocities of these gases indicates
tl, t inside of the ring there must be a total of about 4 Y million solar masses and that
there must also be a concentrated mass in the center of a few million solar masses5 .
Overall, both the ionized and the molecular clouds are not in a steady state configuration
or velocity distribution, indicating that within the last hundred thousand years some rather
violent phenomenon must have taken place. This might have been several very large
supeniova explosions, though the total magnitude of the disturbance is almost too large to
,.xplain this way.

Recent high sensitivity and high resolution infrared cameras have been able to
detect a number of hot stars in the central region•, with concentrations especially high
within about I light year of the radio point source Sgr A*, In addition, the velocities of
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cooler stars in this region have been measured from the spectrum of CO in their
atmospheres7 . It is found that these velocities correspond rather well to velocities of the
gas already mentioned. However, the stars give a somewhat more secure measurement of
the velocity distribution and hence the gravitational field in the region than does the gas,
because there has always been an uneasy feeling that some other mechanism might
possibly have accelerated the gas, such as varying magnetic fields. In fact, however,
measurement of the magnetic fields through Zeeman eff'ectsg on atomic and molecular
transitions indicate that the fields arc less than about I milligauss and too small to have
very much effect on the dynamics of the gas.

General expectations for the source of mass in the center of the galaxy have been
that it would be either a dense collection of stars broadly similar to the globular clusters
which are very namiliar to astronomers or that there might be some combination of stars
and a central black hole due to material contimially falling into this gravitational well. If
the mass is due to a cluster of stars alone, then because of interstellar collisions the stars
would on the average have the same velocity independent of the distance from the center
and a density distribution proportional to I/R , where R is the distance from the center.
On the other hand, if the gravitational field is produced by a sin§lc point mass or black
hole, the velocities of stars or gas would be proportional to I/R . In fact, at distances
greater than about 5 light years the velocities appear to be dominated by stars and are
constant as a function of distance from the center. Inside of this distance, however, there
are deviations from constancy. The increased velocity with decreasing distance is
particularly noticeable inside of a few light years and indicates the presence of a very
concentiated mass at the center of 2 or 3 million solar masses. The only form which
theory presently allows for such a concentration is a black hole.

Although Sgr A* is a good candidate Ior a black hole, nevertheless neither it nor
any other object near the center is presently producing the spectacular phenomena we
normally expect from a black hole into which much material is falling. Long baseline
radio interlcrometry has been able to demonstrate that Sgr A* is 5uite stationary or
moving only very slowly, at velocities less than about 25 km per sec . Other objects in
the same region characteristically move at least about 200 km per see. Hence, there is
evidence that Sgr A* must be substantially more massive than other stars or objects in the
same region. While this source emits radio waves and infrared with charactei',tics
somewhat like those expected from a black hole, the total radiation at the moment is quite
weak compared with normal expectations. Perhaps material previously failing into the
black hole produced such a violent generation of energy that materials have been blown
away in the recent past, perhaps with the event which must have disturbed the clouds
during the last hundred thousand years and blown gas away from the center. Ilowever,
there is presently some gas close to the source and we must suppose that either the
generation of energy is unusually low at this particular moment or that this black hole is
behaving somewhat differently from our expectations,

_ 1
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Observations of x-ray radiation from satellites enlarge the puzzle of Sgr A*. While
there are some x-rays coming from the region of the galactic center, they are relatively
weak. Furthermore, because x-rays would be scattered by clouds surrounding the galactic
center, one can look for the scattering and hence trace something of a histcry of' any
powerfuul production of x-ray,; from the center over the last few thousand years. Some of
the x-rays would have moved out into our galaxy a few thousand light years and then
been scattered towards us. Evidence shows that Sgr A* was a relatively weak source of
x-rays even throughout the last few thousand years"'. In spite of this lack of production
of the high power which is normally expected ot a black holc, the grnvitational evidence
based oin velocitie:: of gases and stars seems to provide rather clear evidence for a high
concentration of nliass, presumably a black hole. Furthermore, thre gravitational field of a
black hole is a characteristic about which we cannot be mistaken, whereas the genecration
of' energy from intall represents a much more complicated theoretical problem, which
faces us with some uncertainties.

Characteristics of the ionized gas arid wanor dust radiation fromn the central few
ligh~t years of the GJalaxy indicate the presence of intense ultraviolet radiation and a total

,uiosiyaout 10' time., that of the sun. TIhese characterigtics appear to he explainable
by the pres~ence of a few tens of rather hot (TI -~ 30,000) K) stars in this region which have
recently been detected. Why these stars arc present, however, is a puzzle. If there was
star formation From gases necar the center, it must have occurred within the last few
million years and havc borined a very unusual collection of stars. Furthermore, present
conditioins in the galactic ceniter do not NLUhik lavoraible I or star Foirmation. Perhaps
instead, these stars represent mergers, of several stars in this regioii of hitgh stellar
densities, somewhat as tire "blue stragglers" in globular clusieis ate thought to have been
tornmed. At present, their forniation and character are puizzling, as is also Ilhe exact nature
of thre unique sourice, Sgr A*.

[he gkeat ;no~gress recently made iii observations of thie galactic center have becii
d nc to i niportan t technical miad i ostruniiiciii al dcv cio ole nist' as3 well as v igoro us
astrophysical research. lortuiuately, we can expect further instrumental progress and
hence perhaips a thorough understan ding n I the very i nterestiing labotratory which is our
galactic center, aiid the remarkable phenomena occurt ing, there.
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ABSTRACT

One of the paradoxes associated with the theory of the formation and subsequent

Hawking evaporation of a black hole is the disappearance of conserved global charges. It

has long been known that metric fluctuations at short distances (wormholes) violate

global-chaige conservation; if global charges are apparently conserved at ordinary

energies, it is only because wormhole-induced global-charge-violating terms in the low-

energy effective Lagrangian are suppressed by large mass denominators. However, such

suppressed interactions can become important at the high energy densities insiide a

collapsing star. We analyze this effect lor a simple model of the black-hole singularity.

(Our analysi,; is totally independent of any detailed theory of wormhole dynamics; in

particular it does not depend on the wonnhole theory of the vanishing of the. conmological

constant.) We find that in general all charge is extinguished before the infalling matter

crosses the singularity. No global charge appears in the outgoing Hawking radiation

because it lhas all guoic down the wornholes.

SThis abstract is a report on work done with my Sfauduate student Shane Hughes, A

full description of the work is available in Phys. Ltt. B309, 246 (1993).
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THE CONFLICT BETWEEN
QUANTUM MECHANICS AND GENERAL RELATIVITY

LEONARD SUSSKIND
Department of Physics, Stanford University,

Stanford, California 94305-4060

It is a great pleasure for me to contribute to Yakir Aharonov's fcstschrift. Over the past
three dcades that we have been close friends, 1, like so many others, have found Yakir's
profound insights truly inspirational. The only subject that I can remember us disagreeing
about is the quantum mechanics of black holes. It is a small irony that I cho()s this topic
for Yakir's celebration.

Introduction

It is almost one hundreci years since the discoveries of the quantum and of
special relativity. It has taken most of the twentieth century to synthesize these into the
modern quantum theory of fields and the •"nd•'d model of particle physics. By
contrast almost nothing is known about the colt, ection between quantum mechanics
and the general theory of relativity. 'The relevant phenomenon are too remote and
inaccessible to experiment for us to expect much guidance from that direction in the
foreseeable future. For this reason most work on the subject has been guided by purely
mathematical considerations.

I believe that we need more than this to keep its oi the path of phenomenology
(what used to be called physics) and not wild speculation, and that in the absence of
real experiment our only hope is to tfcus on gedanken experiments involving realistic
situations which may be beyond our technological capabilities but are otherwise
possible. Perhaps we will uncover physical paradoxes and puzzles whose unraveling
will provide deeper insight than we now have. Let me just remind you how much was
learned from the paradoxes concerning the constancy of the speed of light, the
finiteness of specilic heat of radiation and the stability of the atom.

Why then black holes? T'lhe reason is a combination of factors. iirst of all black
holes are rcal objects which can be assembled from ordinary matter. 'T"o think that black
holes can not exist or have never formed is far more radicatl than to assunw. tlhe
Olpposite.

Secondly, we know from the work of Beke|sticin and Hawking that black holes
are catalysts from new phenomena that intimately involve gravity and quantum
mechanics. Magnetic monopoles also act as catalysts of, otherwise, very remote
phenomena, namely the violation of baryon conservation. In the case of black holes, we

146

•' • .. . . ... . . ...... ~~~~~~ ~~~ ~ - . . . . I - II .. Il- - " II" "



147

:o not know with certainly what the catalyzed effects are but there is reason to believe
that they are more far reaching and profound than baryon violation. They may even
involve the breakdown of the principles of quantum mechanics.

The central problems I will discuss has been with us since Hawking's remarkable
observation that black holes evaporate. The main reason it has stimulated recent interest
is the discovery of 1+1 dimensional theories containing black holes. Initially it was
thought that these theories were so simple that surely we could completely analyze
them and discover the precise nature of black hole evaporation. This is not what has
happened, The 1+1 dimensional theories have just reinforced Hawkins original
arguments leading to his disturbing conclusion that black holes seem to catalyze a
breakdown of quantum mechanics.

Black Holes and Thermodynamics

In 1973 Bekenstein raised the question of whether the second law of
thermodynamics could be violated by dropping thermally excited matter into a black
hole so that its entropy could be caused to disappear. Based on Hawking's obse-vation
that the total area of black hole horizons always increases, Bekenstein postulated that a
black hole has an intrinsic entropy proportional to its area measured in plank units., The
precise formula is

area

Since the mass and area are related by

A = 4 R 2 = 167 M2 ,

one has a connection between entropy and energy

S = 47c M2

If one also postulates the usual theirmodynamic relation

dE = TdS.

"llien the temperature of a black hole is I
T ---

8n M

That a black hole should have entropy is not so surprising. Entropy is a measure
of ignorance. More exactly it is the logarithm of the number of macroscopically
indistinguishable microstates of a system. Since from the outside one can never tell
what a given black hole was formed out of, it is reasonable that it has an entropy. It was
iiiunZ surprising that it has a tcmiperature.

-ý -K
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Hawking soon realized that the finite temperature should cause a black hole to
radiate like a black body. Indeed, Hawking was able to show by quantum field theoretic
rrfans that a black hole radiates like a body of amea -1 67t M2 at exactly the temperature

--. Thus its luminosity is given by the Stephan Boltzmann law
8UM

dM Luminosity - area x T4- _fonst
dt - M2

It therefore follows that th..ý black hole radiates away its energy in a time _M3. The
radiated energy is thermal with a gradually increasing temperature. A solar mass black
hole would have a temperature 10-t11 ev which would make it far cooler that the
ambient microwave background. It would therefore absorb radiation and grow. A
million ton black hole would have a temperature of order 10 GEV and a lifetirv .109
sec.

Evaporation of the black hole is not in itself a problem. The paradox announced
by Hawking concerns the fate of information which falls into the hole, Let us consider
two distinct (orthogonal) ways of producing a black hole of a given mass. The two
configurations may be a collapsing neutron star, the other an antineutron star. The
difference might be more subtle, consisting of only a single neutron being replaced by
an antineutron. In either case the two initial configurations are described by orthogonal
vectors. How many distinctly orthogonal configurations can produce a black hole of
mass M? Classically the an,wer is infinite. If however we are to believe the usual
connection between entropy =nd information, the result should be

--expS - expM 2.

On the other hand, the no-hair theorem tells us that the geometry outside the
horizon is unique. Hawking's calculation of black hole radiation only depends on the
exterior and produces featureless thermal radiation which in no way depends on the
details of the in falling matter which produced the black hole. Evidently this
infori-.,ion is lost unless

1) The black hole ceases evaporating leaving a remnant containing the information.
2) A more complete computation of the Hawking radiation which includes the

quantum dynamics of the horizon produces a mechanism for imprinting the
information on the Hawking radiation.

An S Matrix?

'tHooft has phrased the questi, follows: The initial state consists of a set of
ingoing particles. The particles cut.- be composites such as atoms, planets,
Encyclopedia Brittanicas (for some reason theorists love to throw encyclopedias into
black holes) etc. The outgoing stuff is also particles which in some approximation look
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like thermal radiation. If ordinary quantum mechanics describes the event of formation
and evaporation then it must be described by a unitary S matrix.

Sn > =I out>.

Since the S matrix is unitary the initial sitate should be reconstructable from the final
state

lout > = S+ in>,

thus quantum mechanics forbids the erasing of information.

Let me be a little more precise. In general, quantum mechanics will not allow us
to reconstruct an initial state by doing a set of experiments on the final products of a
jjo even I have in mind an ensemble of events, all prepared in identical manner. In
some of these events I measure a complete commuting set of operators which provides
a probability function in this basis. In another subset of events, I measure another set of
operators which do not commute with the first. With enough such measurements the
quantum state of the final radiation can be obtained. It should be a pure state,

Now do the whole procedure over with an initial state which is orthogonal to the
first. The resulting final state should be orthogonal to the first. The problem is that
according to Hawking's calculation the products of evaporation consist of absolutely
thermal radiation.

So what, you say. Exactly the same thing happens when a bomb goes off. The
initial detailed features of thc bomb are erased but no one thinks quantum mechanics is
violated. It is instructive to consider this even in more dvtail. Let's suppose the
explosion takes place in a cavity with perfectly reflecting walls except for a small hole
where radiation can leak out. The initial state consists of empty cavity plus boinb plus
encyclopedia. After the explosion the cavity is filled with hot gas and radiation which
soon comes to equilibrium. Radiation slowly leaks out. Event-illy the box is in its zero-
temperature groun, I state and the thermal entropy of the outside world is increased by
the outgoing radiat ,n.

I will begin analyzing this experiment by first considering two kinds of entropy
which exist in quantum mechanics. The first I will call entropy ot entanglement.
Consider two subsystems, A and B. It our example, A is the region outside the cavity
and B is the inside region. Assume the space of states is a product HA ® HU. A wave
function is a function of the coordinates of a and those of b.

D (a,b)
The density matrix of b subsystem is

Pb = < 0 (a,b)o(ab')
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and that of the a subsystem is
1.

The entanglement entropy associate .vith a given density matrix is

SE =-Tr p log p

Thus, ir. general, the subsystems A and B have entropy due to entanglement.
Furthermore it is very easy to prove that

SE (A) = SE (B)

The only situat in in which SE is zero is , (a,b) is an uncorrelated product 4) (a)
(D (b). If tl,- interaction between A and B is switched off SE (A) and SE (B) are
conserved. the entanglement entropy is not the entropy of the second law. One final
poiut is if the dimensionality of HA is DA then the maximum value SE (A) (and
therefore SE (B)) can have is -log DA.

The second kind of entropy SI is thermodynamic entropy or entropy of
gna.9..n.n•. Sometimes we assign a density matrix to a system, not because it is
quantum-entangled with a second subsystem, but because we are ignorant about its
state. We assign a probability to different states. For example if we know nothing about
a system, we assign the unit density matrix. If we know only the energy we assign a
projection operator 6(E - Eo). In thennal equilibrium we know the probabilities for a
small subsystem to have energy E and we assign the Maxwell Boltzmann density
matrix.

PMB = eXp (-31H)

The entropy of ignorance is always larger or equal to the entanglement entropy.

Now, following Don Page, let us consider the time dependencies of the various
entropies in our experiment. Begin with the thermal entropy S1 (B). At first it's zero
because we ass;ume everything is know about the bomb-box system. Actually there may
be a small entropy of entanglement with the outside but if the inside and outside are
weakly coupled it is small. The bomb explodes and the thermal entropy suddenly
increases to some maximum characterized by some initial temperature T. As time
evolves, the box cools and the thermal entropy decreases to zero.

Now consider the thermal entropy outside the box. It begins at zero and
gradually increase as the thermal radiation escapes. According to the second law, its
final value exceeds the thermal entropy in the cavity just after explosion. Fig. I
illustrates the evolution.

Now consider the entanglement entropy. Since they are equal inside and outside,
we only need to consider the inside of the cavity. Since the cavity is initially almost
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uric rrelated with the outside SE is zero. This is still trae shortly after the explosion.
However as photons leak out the inside and outside become entangled and SE (B)
increases. Eventually however since SE (13) _ SI (B) it tends to zero. This is because the
cavity returns to the ground state. This evolution is shown in Fig. 2. Evidently the final
exact density matrix of the outside is significantly different in some subtle respects
from the coarse grained density matrix ascribed to it by the thermal description.

> Rad' n Outside

C

I-

W

Radiation

Time

Figure 1: Evolution of Thernal Eniergy Inside and Outside a Box.
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Figure 2: Evoluton of lUntanglement Entrophy.

To understand the difference consider the time at which SE is maximum. The
entanglement entropy outside the box may be comparable to the thermal entropy. At
this time large correlations exist between the outgoing radiation and cavity. Later on
when the box has cooled, those correlations become correlations between the radiation
which came out early and the lately radiated photons. In other words, the subtle way in
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which the outgoing radiation is not exactly thermal is the existence of long-time
correlations. Locally the radiation looks extremely thermal. It is these correlations
which carry all the initial information. The central question facing black hole theorists
is whether such subtle long-time correlations exist in the Hawking radiation
accompanying black hole evaporation. The dilemma is that if they do not, then the
process of formation and evaporation cannot be described by an S-matrix and ordinary
quantum mechanics can not describe it, However no known mechanism exists for
transferring the information from the infalling matter to the outgoing radiation. Let us
see why this is so.

Penrose Diagrams

A Penrose diagram is a schematic representation of a space time which is
especially dseful for spherically symmetric situations such as a Schwartzshild black
hole. All of space time is represented on a finite region with time-like, and space-like
infinities mapped to points. For example empty flat space time is shown in Fig. 3.

r=O ) r=~o

t--oo

Figure 3: Pen'ose Diagram for Flat Space-time,

The lines labeled ji are called past and future light-like oo. They are the places where
light signals begin and end. All radial light-signals aie represented by 450 lines.

An eternal black hole is shown in Fig. 4. The wavy dark lines are past and future
singularities and the past and tuture horizons are dashed lines.
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S)~r=-

Figure 4: Penrose Diagram of an Eternal Black Hole.

In classical general relativity, a black hole can be formed from infalling matter
but does not evaporate. The Penrose diagram for a black hole created by an infalling
massless pulse of radiation is shown in Fig, 5.

Figure 5: Penrose Diagram of a Black Hole formed by Infalling Matter,
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Finally the Penrose diagram for the formation and subsequent evaporation of a black
hole is shown in Fig. 6

I+

// Hawking Photont,

Figure 6: 1 eni.•e Diagram of a Bglack I lole that forris anid then evaporates.

Let us now consider a spat~eike SUrt~ce I which consists of a part inside the
horizon and a part outside as in Fig. 7.

/1
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+

Figure 7: Spacclike Surface Y across the I lorizon

T spacehike surface inicisects b th the in-f•hling matter and the outgoing

radiation. According to standard quantum field theory, we can specify a quantum state
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on this surface which lives in a product Hilbert space which by analogy with our
previous discussion we label IIA ® HB where HB is the state space inside the black
hole. Since to the future of I the inside and outside evolve independently, their
entanglement entropy are separately conserved. If the entropy of the radiation is to be
zero, it must already be zero on L. This in turn would require the state on Z to be a
product, ( (a, b) = D (a) 4i (b). Let us also call the incoming state on I-, Ix > in. Let us
denote the initial state dependence of 0 (a) and 0 (b) by Ox (a), Ox (b).

Ix > -~0(a)O.(b)

Now assume that an outside observer who sees only A can describe such events
by a unitary S matrix. This requires the observed final state Ox (a) to be linearly related
to x. From the form of the final state Ox (a) Ox (b) it follows that if O(a) is linear in x,
* (b) must be independent of x. The meaning of this conclusion is that there is no way
that all of the information in x can escape in I lawking radiation unless it is completely
obliterated before crossing the horizon. The obliteration of the initial state is however at
odds with our usual conception of the horizon. It is almost uiiiversally believed
(including by me) that an infalling observer feels nothing unusual as she crosses the
horizon. Classically the horizon of a large black hole is locally very flat with no large
deviations from the flat vacuum. Furthermore quantum field theory in such a
bac•.round indicates no significant quantum corrections to the flat-space vacuum. All
indifations are that the information contained in infalling matter is not deflected as the
hvizon is approached. By an argument similar to the above, one ought to conclude that
the state of the Hawking radiation is independent of the infalling matter so from an
operational point of view, quantum mechanics would be violated.

The trouble with this viewpoint is that it does not illuminate the meaning of the
Hawking enuopy. If we think that entropy has its usual meaning then the entanglement
entropy of the decaying black hole (or the radiation) should be less than or equal its
themal value which according to Hawking tends to zero as the mass evaporates. In fact
if an extremely large black hole of mass M evaporates to mass in (still much bigger
than Planck) the outgoing radiation should have thermal entropy larger than M2 but
entanglement entropy smaller than m 2. This should mean that long-time correlations
carry out large amounts of information. Any other resolution of the information
paradox should also explain why ordinary thermodynamics works for an outside
observer without the usual underpinnings of standard quantum mechanics.

I have spoken with a large number of people from both the particle physics and
the gravity communities, some of whom I conisider very deep thinkers. I have. lounmd no
clear pattern in their opinions. Hawking is stiongly convinced th!,t information loss is
catalyzed by black hoMs while 't~looft is equally convinced that an S matrix exists.
Aharonov is the champion of a group who believe that plancksized remnants store all
the initial information. John Wheeler would only say, "Hmmrn, this is disturbing".
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Perhaps that is all that should he said now. As for myself, I believe the foundation of
quantum mechanics and information theory must be correct and that an S matrix exists.
An ou. :ide observer sees the horizon as a thermally excited membrane. I believe that a
correct description will be found in which, like all real membranes, the information
stored on it when it is thermally excited will be accounted for as it returns to its ground
state. Nevertheless, I also believe that a freely infalling observer sees nothing special at
the horizon, but since he can not communicate this fact to the outside, no contradictory
conclusions will be reached by an observer. However, at the present time this view
seems inconsistent with the traditional ideas of local quantum field theory which would
demand that the question of whether an infalling observer passes through the horizon or
is disassembled into bits and radiate as Hawking radiation would have an invariant
answer. Perhaps this is one of those times where progresq can only be made by
simultaneously believing two apparently inconsistent things.
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One could try to maintain, as indeed is often done, that black holes must
therefore be radically different from elementary particles, including solitons such as
magnetic monopoles. But this is too rash a conclusion. It would imply that black
holes are not even "quantum predictable", but only obey probabilistic laws, To this
author such a lack of precisely defined physical equations such as the Schrbdinger
equation is not likely. Surely the background metric approach to black holes can-
not be right, just because it assumes that the particle fields can be superimposed
onto the background fields, and we had already concluded that this superposition
principle cannot be correct.

We can pinpoint in another way the complication that was ignored: there
axe interactions, in particular gravitational ones, between the in- and outgoing par-
ticles. Now under normal situations this would not have been a great disaster. In
quantiun field theories one can easily correct for such interactions by adding a series
of successively tiny perturbative corrections. But the gravitat, ,*!l interactions are
not normal in this respect. If we want to know how the ow. ; react upon any
variation among the ingoing particles at al earlier epoch, we find a disturbing diver-
gence: the strength of the mutual gravitational interaction diverges ezponentially
with the tinie difference. Hence any perturbative approach is out of the question
whenever we wia', to follow the evolution of some configuration over any appreciable
time interval,

In these notes I will skip the general introduction to black holes, which have
been described abundantly in the literature'- 4 . One important aspect one has to
rememlibr is that the total number of states, or energy levels, of a black hole can
be estinnmted using simple arguments from thermodynanfics, a-ssuming that a black
hole carries a temperature as given by Hawkingl:

kT- 1/8rM, (1.1)

in units where c = It = G = 1. The result is that the level density p(M) as a
function of the imass M is given by

(+M) M2 + , (1.2)

where 6 is on iiiknown constant. The point is that this mnuber is small! If one
counts the number of levels provided by the thermanl particles in the vicinity of the
black hlole one finds that thie iarticles further than about one Planck unit away
from the horizon are sutlicient to produce .ll the entropy corresponding to these.
levels. The ones closer to the horizon would provide anl infinite contribution if we
were allowed to u,,-ve a linearized theory. Of course these particles do not obey a
linearized theory, but the mnechanismt by which their contribution to the entropy is
turned off is obscure.

For this reason we expect that inconiing particles indeed do affect the details
of the quantum state a black hole can be in, in the sense that they determine

staes evolve into Itixed states due to this uncertainty, but here this in clearly seen as a shortcoming ill our

inforwaticm concerning the effective interactions. The uncertainty in question could be resolved for instance

by performing accurate ,neasureilents.
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details of those emcerging particles that were closer to the horizon than one Planck
length when the incoming particle entered. Our best guess is then that the black
hole is just one set of the possible intermediate states ini an S-matrix. It should
be in no fundamental w-ay different from ordinary particles. Light particles have a
Schwarzschild radius much smaller than their Compton wavelength; for black holes
this radius is much bigger. This distinction must be a gradual one. And so we
arrive at the "S-matrix Ansatz"' for the black hole. Onee we assume that the black
hole has an S-matrix, we can actually derive many of its properties, because many
of the relevant laws of physics are already known I us.

2. The Pseudostring

We first observe that the nature of the grayvitational interactions between
incoming and outcoming particles can very easily be characterized. Incoming par-
tides produce a horizon qhift. This horizon shift may be very tiny, but its effects
upon the outgoing particles grow exponentially with time. They arc also readily
computable6 . The wave functions of all outgoing particles arc simply shifted, by an
amount that depends on the angular location on the horizon.*

The quantum state is shifted, 111d limnce the outgoing wave functions are all
multiplied with factors exj1(ip,,,tAy), where i,,t is the mnomnlitumn in Kruskal coor-
dinates and by the horizon shift, a function depending explicitly upon the angllar
coordinates V and w. The (ff'ct of this operation would be a hlariiless mnultiplication
if the outcoiing particles were in a Kruskal loionctuiun ,igenstate, but of course, in
mnure relevant circumstmnces they .arv not in such eigr'istates. This way we conclhde.
that any altcration of the form

I/')i., -' 11¢ + (¢,,,, ( 1)

where 6V carrices a given Ilonuientui ,,(P, l ), affecfts tie o(tCotning state by the
above giveni ,Olcrati n.

We cmi now repeat the argiulient ms miay tiies a we wish so that, ill
principle, we shnould obtain all other H- natrix chnlmnt s. The proecdure, and its
results, ar' descriled in Ref'. They can 1be st iuninmirizu l as follows.

Tlie un llmltnta of in- aln(l outgoililng 1articlis ,, (19,W) 111 dout0, 0), are to be
defincd with respect toL Krusklo coordiliates, not Sehwarzschild coord1 , ates this
is a point of concern, to lbw discussed later. When Sp)ecified at all aigular positioiis
(0, T) these re, mmenta, and ill addition some other quaintities such i's electric charge
density p(, 9 ,w), these variables should entirely spleify the qultuil states of the in-
nlld out- Uilltull states respeutiv('ly. So we refer to these stitte.s as

I.,( 11),P,,(12)) (,Old 10,,,,t(Q) , PL 0(2)), (2.')

* This algLutl;tar ldp(IIdtI(le it 'l c (:raic fIor milr arguiw l.s, since wil.holt. sch ;ill mtligular depejn

den(w oin could Lraisformu (pre'tically) all its cllents away. 'i1h41 ins why omit 11us1 b,! very careful ill

interpreting some pOpitlair two-dimelmniimal toy models OF black holes'z,

_ _ _ _ _ _ _.... .. ... .. . .. -J
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where 0 stands for (t9, ,p). The resulting S-matrix can then be written as a functiooial
integral

(Pout(i) Pu.t(Q) I pin(fn). Pi(n)) =

YA/Vu,(rnv4)(Q)exp ifd2Ol( - 4(Onu,,)
2 + pý.o,- 1 (.g,,0)2+ (p~ut -Pin)) (2.3)

Here K is a normalization factor; the Lorentz index p is defined such that P. =
(v2)-1 (pin + p.., 0, 0, 0pi - pout), similarly u,, and K is a constant defining the unit
of electric charge. ua, and 0 are functional integration variables, depending on the
two angular coordinates on the black hole horizon. u, are like the two transverse
dynamic variables of a "string" whose world sheet is the intersection of the future
and the past horizon of the black hole, which is a two-dimensional surface. 0 is
a periodic variable (it ii, defined as an angle rnodulo 2r). This is a consequence
of eleet.ic charge quantization. Observe that in every respect electromagnetism
appcars to be represented here as a Kaluza-Klein theory. This was not put in but
camne out of our theory as a consequence of the S-matrix Ansatz.

The similarity between Eq. (2.3) and a string theory amplitude is s" --.
This resemblance becomes even closer if we represent the in- and out-st.
particles in wave-packets. One then has to integrate over the coordinates (t),)
convoluted with a wave function, and these integrals then correspond to the Koba-
Nielsen integrations. An important difference between (2.3) and string theory is the
factor i in the exponent, which corresponds to a purely imaginary string constant*.
Oar interpretation of this observation is that the black hole horizon can in some
repects be regarded as the world sheet of a virtual closed string. The external
particles are inserced there as vertex insertions in the usual sense.

We discovered that one can start with several kinds of fundamental inter-
actions in one's favorite standard model and observe that these are reproduced in
the functional integral (2.3) on the horizon. Electromagnetism, here repre-ented
by the variable 0, being just an example. Non-Abelian interactions give rise to
more complex variables in two dimensions. Quite generally however the following
picture emerges: The gauge transformation generators of the 4-dimiensional theory
correspond to the dynamical variables in the 2-dimensional one, Th-refore the spin
of a physical lcgrees of freedom in 2 dimn.'sions is one less than the corresponding
one in 4 dimensions.

Scalar and Dirac-spinor fields seem not to generate anything in 2 dimensions.
An exception to this is the occurrence of spontaneous symmetry breaking: if in
foul dimensions a symmetry is broken spontaneously, the corresponding symmetry
in 2 dimensions is ezplicitly broken: tihe scalar field in 4 dimensions maps into a
"spurion" field in 2 dimensions (spurions were used in the 'TO's to describe explicit
symmetry breaking interactions). Indeed one may view the value of the scalar fields
ut the horizon intersectomn point ;s being the spurion parameter.

* iThet N that the string coonstalit ':olnes out imaginary should not be sin a.' a etipart urr Irvn

sIitaIity, ,is wus a:,-rtcd by one alt h o,. hut Iather as a coiasequenec of unitarity a-* required in our forkiialisit.
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A dual transformation in 4 dimensions corresponds to a similar dual trans-
formation in 2 dimensions. Thus, magnetic monopoles entering the black holes
generate a topological kink in the two-dimensional system; furthermore, quark con-
finement in 4 dimensions can be seen to correspond to an explicit symmetry breaking
in terms of the scalar disorder parameter in two din. ,isions.

Proceeding along these lines it is natural to suspect that a gravitino in four
dimensions corresponds to a Dirac spinor in the 2-dimensional theory. What we have
not undernitood at present however is how to incorporate effects of Dirac spinors in
four dimensions in the 2-dimensional theory; they seem to leave no trace.

For more details of the string picture of black holes we refer to Ref.

3. Problems with Unitarity

Is our scattering matrix (2.3) unitary? A strange new problem arises. One
may observe that the scattering matrix will indeed be unitary, but only so in a very
unconventional Hilbert space. Two states that have exactly the same momentum
(and charge) distribution for the ingoing - or outgoing - particles, cannot be dis-
tinguished any other way and therefore must be identical. In particular the number
of particles entering or leaving at a given spot on the horizon cannot be specified.
This implies that the Fock space of elementary particles will eventually look very
different from what it used to be in elementary particle physics. For instance, the
in- and out- states will carry no label specifying their baryon number. Consequently
the black hole scattering matrix cannot possibly obey baryon number conservation.
Clearly continuous global symmetries in our fundamental particle interactions can-
not be reproduced in the black hole scattering matrix.

Another apparent problem with unitarity arises if the shift 6y(t?,,•) at soine
values of t? and W becomes too large. It could then be that a particle, originally
destined to emerge in the out-state when the in- wave function was IV), is shifted
beyond the horizon when the ini-state is IV + 60). This is a consequence of the
fact that we had been forced to define momenta in Kruskal coordinates in stead of
Schwarzsehild coordinates. A shift in Kruskal space can bring a particle behind the
h orizon.

We should stress that this latter problem is only an apparent one. There is
no real contradiction with unitarity here because we imagine the total set of allowed
out- states to be much smaller than the Hilbert space s'panned by all possible waves
of outgoing particles. The shift by does not affect one single particle lut an infinite
series of particles emerging at all times. So if one or several of these disappear
behind the horizon there are always enough others left to enable us to distinguish
thie, shifted out- state from other out- states. Thus, our problem is more of a
practical nature than fundamental. It tells us that the standard way to budid up a
Hilbert space in ternis of plane wave of particles cannot be used here.

These problems must be related to another practical problem: even the set
of all functions p(6, ) ald p(O,w) is too large. Our entropy aruments suggest that
there should be no more than about one Boolean variable per unit of surface area



164

on the horizon in Planck units. This is as if these functions p and p have a cut-off.
Components of their Fourier transforms in the transverse directions with momentum
larger than a Planck unit should be removed or considered redundant. On the other
hand lots of details on a distance scale just a bit larger than the Planck length are
described by as yet unknown parts of the standard particles interactions. These
details will be essential in the definitions of inner products in our Hilbert spaces,
yet they are not yet accessible to us because the particle interactions at those sciies
are not yet known.

All this may seem to be extremely unconventional and inaccessible physics.
But it is not quite that bad. We emphasive that the mathematical situation here is
exactly as in string theories. In string theory also it is not the entire Hilbert space
but rather the scattering matrix that is constructed. If particles are identified as
vertex insertions on a string world sheet then exactly the same feratures do show up
in string theory. Consider namely the Koba-Nielsen integrand with a given array of
vertex ins:ertions, for a given N particle amplitude. If in this integrand two vertex
insertions occur at the same spot on the world sheet then this is indistinguishable
from the integrand for the N - 1 particle amplitude. Replace the string world sheet
by the horizon. The indistinguishability of two particles on the same spot on the
horizon, or rather the fact that this state cannot be distinguished from a single

particle state at that spot, has the same mathematical origin.

4. Unitarity in Complete Black Hole Histories

Our scattering matrix Ansatz tells us to assume as a starting point the exis-
tence of a scattering matrix for a black hole. And then we can deduce information

about this matrix by applying all phy dcal laws we know. The only reason why this
does not work completely is that we only know the interactions between elementary
particles at low energies, or, equivalently, at large distance scales. So we do not
know how to characterize the very small distance features of our scattering ma-
trix, and since inner products of states depend crucially also on the small distance
features, we run into problems as described in the previous sectiom. The general
strategy we are trying to implement is to use the known laws in as many forms
as possible to reduce these uncertainties as much as possible. Also we can try cer-
tain assumptions concerning the small distance interactions to check which of these

produce a consistent theory (we saw for instance that baryon number conservation
must not be a symmetry of our basic interactions).

With this strategy in mind we now proceed to consider a branch of the
scattering matrix diflfrent from the one considered before, namely the transition
amplitude from a black hole just formed into a black hole exploding into expanding
dust shells. Thus we consider a completely specified in :tate, lin), a completely
specified out-state, lout), and assume that one single amplitude (outlin) is given.
As before, the question is to deduce other amplitudes

(out + 6_t lin + 6,,,) , (4.1)
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where 6oL and 6, are tiny alterations. We now proceed in a way very different
from Section 2, namely by first postulating a singularity free, topologically trivial
space-time metric corresponding to the original amplitude. That this is possible at
all is surprising and requires some discussion. The trick is to assume the outcoming
matter to be due to some unspecified interaction process very near the horizon
which gave rise to extremely strong curvature there. This curvature would not be
directly detectable for ingoing or outgoing observers and therefore its presence does
not contradict anything we know. If it were observable it would contradict the
ordinary laws of physics. This is a necessary aspect of the S-matrix Ansatz. Thc
mere assumption that an amanplitude (outlin) exists dotes contradict "nomnal" laws
of physics. So we are forced to assume something out of the ordinary there, and the
least harmful way to do this is to postulate a conical singularity (actually it is not a
singularity but just a region of very strong curvature, because the singularity will be
slightly smoothened). The presence of such a singularity will only be visible when
devices sent into the (approximate) black hole and reappearing somewhat damaged
after the black hole decayed, are compared to apparatus that stayed just outside.
But such an experiment will be impossible classically. In stead of these "devices"
we will just consider infinitesimal additions 6V to our wave functions and study the
effects on these.

The Penrose diagram is now the one pictured in Fig. la. It is topologically
trivial. Apart from a mild (very slightly smeared) singularity at the point S there
are no further singularities. The dotted lines are very much like horizons, but of
course they are not horizons, they replace them. At the point S the standard laws
of physics seem to be not obeyed. 'J lie curvature there is the one produced by a
very violent "interaction" that caused the incoming shell of matter to turn around
and go outwards. It is as if a "chemical" explosion takes place there which was
just strong enough to avert the gravitational implosion. Let us stress again that an
observer who stays outside the black hole (or "pseudo-black-hole") can never detect
this curvature, so that from his point of view all laws of physics are obeyed.

What we claim now is that this proces may well be reconcild completely with
the known loaws of physics, even at S, by studying quantum field theoretical effects
caused by the curvature at S. In the next Section we shall prove that the singularity
is such that if one starts off with a local vacuum, a nearly infinite spectrum of
particles will be created there. We will then argule that if oil the dotted lines in
Fig. 1. we require the absence of particles, there must be particles in the gray
area. Originally we had "postulated" that there are particles there; we can now
derive that the postulate may well be correct. So the whole picture may become
self-consistent.

In our simplified model we replace all incoming and all outcoming matter
by single "dust shells". Upon careful inspection one finds that this is hardly an
approximation, see Fig. 1, where all matter coming in is squeezed towards the
"far past" and everything coming out towards the "far future". Near S the most
regular coordinate frame is a "temporary" Kruskal frame, and hence all matter in
our space-time diagram is very strongly Lorentz boosted.
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Fig. 1. a) Non-singular Penrose diagram for an entire black hole history.
1) Coordinate frame in the outside region of the black hole is more dense. At the
point S there is a conical siigiilarity.

Our model then is of the same type as the some of the systems studied by T.
Dray anil the author in Refs. Here we studied the effect of in- and outcoming dust
shells on, the Schwarzschild metric. But in this work we explicitly postulated the

absense of, ,nical singularities at points such as S, so that the oceurance of typical
black hole si, gularities at r = 0 both in the past and in the future is inevitable. Now
we take the inmoe models with conical singularity at S, choscn in such a way that
the singularit.,es at r = 0 go away. Then metric one then gets fits naturally with the
S-matrix Ans.,tz. The strategy is now simple. In Fig. 1 we postulate space-time to
be flat in all of the interior region, except in the quadrant where an outside observer
sees the black hole. There we have the Schwarzschild metric corresponding to a mass
14, Consider the Kruskal coordinates T and y . Let the physical quadrant be given
by x > o,y > o . Very near the Schwarzschild horizons, at the line z = zn and the
line y = y, where x0 and yo are very small but positive, we have the miatter shells.
At those shells we glue the Schwarzschild metric against the flat space-time metric
such that the Schwarzschild r parameter matches with the flat space r parameter.
The metric is then (c".

But a singularity develol)s at S . This we see as follows. Suppose we use
Penrose coordinates, that is, coordinates such that the local light cones have a width
of exurtly 450. One then finds thb.t the fphinig procedure just described forces us to
scale down the Schwsuzschild solution (a's written in Kruskal coordinates) to a very
small size, and to blow up the internal region of the bla'ck hole to large sizes, This
is sketched in Fig. lb by drawing dense coordinate lines in the outside region anld
wide coordinate lines inside.

In Fig. 2 we illustrate what happ)ens to geodesics near such a point. At
the point 13 in Fig. 2c we make the transition to Lorentz transformed coordinates,
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Fig.2. In a) and b) tire region I is Lorentz boosted compared to region II. Since
this is just a coordinate repararnetrization a geodesic (dotted line) goes straight. in
c) we performed the tranaformatioo of a) at the point A and the one of b) at the
point B. At both points, the orthogonal coordinate was squeezed. Consc(Ipently, a
geodesic going through region I iN now bent over.

but because the orthogonal coordinate is scaled in the wrong (lirction a geadesic
crossing at t1 is bent over. The same happens in A. Thus, two particles with equal
velocities may end up having different velocities if they pass the poiii. S at opposite
sides. Thus the singularity at S •ms the effect of a Lorentz transformation if o,;e
follows a loop around it,

For a black hole with lifetime long compared to its size the lorentz boost
across S is extremely large. For the remainder of our considerations we prefer to
concentrate on the case that this Lorentz boost is not so extremely large. This iap-
pens either if one considers very tiny black holes, or black holes with au extremely
"unlikely" history. The only reason then why this history is unlikely for large black
holes is that the amplitude is too small after multiplication with the appropriate
phase space factor, which is also too small, so that other processes (giving the hole
a lifetime of order M3 ) are more probable. WN just point out that this is not at all
an objection against considering the amnplitudes for such "unlikely" histories.

Thus, we concentrate on Fig. 1 where the region very close to the origin, 5,
is described by Fig. 2c. let the total Lorentz boost along It closed curve be given
by the parameter € in the boost matrix

/OI roclr4' sm0 0 0
o sinh cosl, 4 0 (4.2)a 0 1 0
2 2 0 *

The local effect of the shells of matter is small compared to the effect 21 the conicaL:
singularity.

5. Particle Creation by a Conical Singularity

We now consider the cffect a conical singularity of the sort described in
the previous Section has oil a quantized state in field theory. Since the metric
hts no timelike Killing vector there i:i no conserved energy. I we begin with thw
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vacuum state at t - -oo the state at t = +oo will in general contain particles. The
computation is not hard. Observe that, in contrast with the familiar calculation
of the Hawkirg-Unruh effect there will be no information loss. Later we will be
interested in different initial states, but let us begin with the vacuum.

For simplicity we take the field to be scalar. The local operators yo(x,t) and
@(x,i) are given by

k 7/2Vk0)t
w(x,i) • • (a.e'" + 4cukt), (5.1)

and

wt- - iake"k + ia ei-'kx) (5.2)

where ak and at are annihilation and creation operators at given three-nionientium
k. As usual we define kV = v'Ti• and kx = kx - kit .

We take Eqs (5.1) aid (5.2) to hold at time t < 0, before the singularity S
occurred. At time t > 0 we take the fields to be

1 (bkelkl + 5-ik)

where V are Cartesian space-time coordinates at t > 0. They are related to the
x, t-coordinates by

y7=x if xI <0, y=L-'x if X1 >0, (CA)

where L is the Lorentz transformation (4.1).
One finds that

b, = EA+ a* + ZAai, (A.5)

k k

where A+ and A--, are coefficients. From now on the variables p and k are only
the r-co'.aponents of the mola'enta, the ones that transform non-trivially ule,,r
the Lorentz transformation (4.1). p0 and k" are the usual time components of i le
momenta. Also we write x =- z. Let us furthermore use the shorthand notation

coih =c , sinht=s, (5.(0)

where 0 is the Lorentz boost parameter, We will use a finite-voluhnc fornilation so
that the momenta are discrete. The coefficients are then computed to be

--1- f ((I ± I') -ik--P- •v ck0 - A P)

pk 2V kP 1k p )O ~ ~ 1

where V is the volume (soon to be sent th infinity),
The integral over x can of courst' we calculated:

A iW,•vp" k-") + i(p' + (Ckt - k) (5.8)
F 2 V1 1fj k k- p-ie ck -sku -pV4+-
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It is illustrative to compute the occupation number (bptb,)o , where ()o corre-

sponds to the vacuum of the annihilation operators ah. It is found to be

(b , = I JA;,,- 1
2

1 A (, - - sk° - p) + (p - k)(p° - ck' + sk)2'

T"- 8rP'1 J(i) -
0 )c (k- P)(tCk - k 0 - P) +8))2 ()

where the summation was replaced by the integral for V - cc, and in the integral
we must insert

ku = rk; 
2 + m  (5.10)

and similarly for p". Here k is the transverse part of the momentum k.
The rest is straightforward arithmetic. All integrals can be performed and

the result is

2rVpu 1.11751-0 21 (5.11)

For small 4 the quantity between square brackets is

[. ... I = - 3-ýi + ... . (5,12)
6 36U 5.2

and if 0 is large then it approaches

[..- - -- I1--. 2 + '4 4• + ., (rI,- )

Note that the p dependence is dtp/21P = ,jph(p2 + o,,2), which is Lorentz invariant. Il-
variance under Lorcntz transformations in the x direction is not surprising. But the
invaritace in the transverse direction is nm awcid.nt. The coefficients A: themselves
do not have this latter invariance. Also, the fact that Eq. (5.11) is independent of
the sign of 0 is aln aridtnit.

The coeffiei,',,A; of Eq. (5.8) were comnputed for given 3-miomnenta. The cal-
culations simplify however if we go to lightcone coordinates instead. Thi outcome,
such ais Eq. (5.11), of course stays the same.

6. Conclusion

We propose to use the metric of Fig. 1 to compute amplitudes (4.1) if one
single mnuplitude (out in) is given. The conical singularity S is not strong enough to
cause any loss of ;ifornmation. If ,S' were infinlitely sharp it vacuum in-state would
cause an unlimited particle production into the out-state. We cal put at bound on
this particle production by simnaring the sh,_guk.rsity a bit. We showed that calcilat-
ing the evolution of the state that started out as a local vacuum is straightforward.
But what actually will be tieeded is the evolution of a state that has no particles
coming front (r = 0) (the lower dotted line in Fig. 1a) into a state that has no
particles mioving towards (7: 0) (the upper dotted line in Fig. la). In general these
states may have particles on the other side (the gray arcas in Fig. la). Computation
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of thest transitions is much harder because the distinction between left-goers awd
right-goers is to some extent arbitrary arnd hence difficult to implement.

We note that the in-. and outeorning particles caused by the singularity es-
sentially imply that our Ansatz for the metric is self-consistent. Somewhat anure
preicisely, we propose the following. In contradistinction to the procedlure we pro-
posed previous-ly, and which was recapitulated in Section 2, we now assbume tluit
the variations 60 of both incoming and outgoing states are too small to have any
direct gravititional effect, so that here we can superimpose quantum states inl the
usual way. We will refer to the p~articles in 60 as "soft" piarticles, All particles
whose gravitatioual effects we wish not to ignore (the "hard" particles) We put inl
the )riginul states louit) wimd Iin). Fo i) tell of these "gravitational windows" we
canU compiute it block

(out + bo..in±l biu) (.1

Indeed all these amplitudes are uniquely defined up to one overall multiplicative
coustant. There is no drain of information. Onl the other hand however, there is
a (divergence: if S is infinitely sharp the majority of transitions will Contain hulge
nuibewrs of p~articles nmodifying theC Olready heaIvily populated in- aind oult--States.
Just because we wish to considIer only soft pamrticles inl 6V' we mmust accept a cut-off
for the singularity s. The exact location of the cut-off, the transition region between
soft and hard particles, unuis to soni cextent be irrelvant.

Note that the transitions, 6,,, -- b~, themselves, will not violate anly of the
syinnuntries Of our tAnI(hUC(l inlteractions, However in the entire block ((;.I) the hard
particles will violate! all global symine tries, but for the enltire block this violation
will be the suacn.

We belieV, Oui neVw proposa~l Will openm up different elements of the
black bole scattering immatrix and allow us to study this miatrix further. Ultimautely
all procedures should b~e combined into one( single theory, but We are niot yet tlidi
far, By construction it seems, that there cannot be iuiy violation of unitarity for this
ixmatrix, but we should admnit that this has not yet bceem demonstrated. The problem
is now that the .8-rimatrix describing the soft pamrticles alone, after the cut off, will be
limiitary. lBut without cut-off the blocks (6.1) thait we have are eachi djfferrCTn parts

of diferent .,--mmatrices. Each Of tIhese maVtrices separately are uinitary, hut whether
this comibinatioii will again be unitary remumin.,. to be seen. A (delicate studly of the
variouls limiting procedures4 involved will 1w needed to anlswer such quesitions.
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surface terms at. spatial infinity". This is due to the vanishing of the timie displacement
generator and even though thel. theory can he unambiguously formulated only at the
Semi- classical level, such a cOnlseqIilence of repararnetrization invariance should have
a more general range of validity.

To paramectrizc evolution, one theit needs a "clock" which would definle timie
through correlations 5 , namely correlations of matter configurations with order(]sed
quenicesl of spatial geometries. If (lUantuill flulctuations of thel melttric hield c-all be ne-
glected, till field compsonents gyj at every point of space~ call always be par'ametrized
by a classical time p~arameter, ill accordaluce witli the classical equations of motion.
[This Classical timei, which is inl fact a function of the yij , call be itsedf to describ e the

evolution of matter and constitutes thuis such a dynamical "clock" correlatinig matter
to the gravitational field'. 'I'his dlescription is available inl the I l1Lliltoni- .acolsy limit
of Eq.( I) where the classical background evolving in time is represented by a coherent
sulperplosition of "forward" waves formned from eigenstates of Eq.( I ). When qitantunt
iletrie field flutctua~ttionls are taken into accounlt, "backward" waves, whtich caii ble
interpreted as flow ing backwards in timec, are unavoidably genecrated from lEq. (I) 1111(

the Opel(rational signlificanlce of till me lttricU clock gets lost ouitsidle tile! doi laili of valid(i ty
of thle HIanmilton J1acoby liiilit. N eve~rtltvel.ss, ill (Iol111ail1 Of Ilerlfit d COlt figioratiollS,

where blothi for warid and backward waves are p~resent bult whtere (plalntmttlI tlctuIatiotls
arv sot liciently nlllinterfereliices with such "tLlme reversed" svllli-clasgicl solutions

wil ii gtled h Ieglgile . -rjcting then out tile backward wave~s rt'xturts the
oper!atiolnal signtifican~ce of thle titetric clhck but thte (VollItitoll Ital-lOS liy tile corrtla-
tioll thuec is no mlore iiititary: illforttllat~ion haS beent lost, in projecting filese blackwardl

waVeS SteI111itng frltllt reVgionis where qIllailtlill fluctuationls of t'lit (flouk arl siglificalit.

Tihis ihs 0li lly I Lpaj~)Xlel ViOlhtiOll Of Inlitarity WhiCll would be dpisilose of' if tihl' fuill
c(Iltell (If tile! theory would he keplt, plIetlla115 evenitutally by reullterprtting backward

wavvs ill t-l~lls (If, tilt creatio ll I "lliliverse" lIllatItt Litr-l1lg6l a f`111111r qttlllt1ti'/atiOll

of Ow wlavefnllctioil iV.(l I)

Th'iis apllli~l~ll Viol-L.ioll of 111litLtrity is 1pS16.lti alllaly Ittarl(ed if tite! g-aVitatiol(lal

clock t!xplriteItUIs dii' ;tlllll, (If~llatilill iluctnatiottsi ar isilg fi-olil a. tiiitt!Il ig pruct-SS.

lThis c.all be ililu:;trated fromt the sin~iplo anlalogy, represented it1 Fig. I, offered by
;L llollltClfl~iViStit. cloisei systeml (If total fixed enlergy whetre a ilarticll! in ((itt! spacLe

duinlenlsioln xI IlloVintg ill Li)t ptelitiaLi II(x) pllays till- role (If iL clock for smlrrollnding
matter antI tioltlles titrollgil it arg(e IO(lt(!Iial bariLetrW Ollthid thll flatrier, the clock
is welil lpwoxitlliated by semti-cias-sical waves, btit if oil the left (If thel t.1tlililg politnt aI
01iC w~lilil take ontly forward waves, Olilt Wolld inlevitablly hlave olt the' righit. of tile othler

t'illil i i poinit b both forward and 1(biack wardi wave!s with Ilarge ampi (ituldes collp all t
w ith till originlal Onles. Ibe ratillo In tw ien the sqli~arc8; of theo folwvard all pli tildes oill
till! right and oill till left. (If till! baIrrier for t cLllllomponent (If tile c'(llk wave witht givenl

clock eneltrgy E',. is, till! iiivers(! transmisllsiont coellhici~llt No1 , ( A) tilong~l tile briclý r l(r0(

p~rolvides a iIlt'e;IInl of till apfparlit'l viola~tionl of' Ilnitar-ity. Ill tiUI ll~ltlilt~llI- .1laCoiy

tialI.SllliISNi0Il CllefliciVlt~s No wil] itqilIea is till! It:Ltllral (lil tol ((1111110tI Ohe ril~tlroy

trallSferIlliI reverIsibly hetmwecil Oill inctlrtit 1:Iok (111 all mailer. More pretcisely, We Shllt

I Fo ;tn-vnt.dis~issoiiof'ml~ted uobemssee efe~iie-7
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,;(.e that, ill thlis Iin ifi spherically symmnetric spacetnues bounded b~y event horizons
are inl gencral cuii iedted b y tunneling t~o a, iot~her man ifold anid that. the entropy gainced
bly tunneling from tfl e lat~ter to tUlu form er is, for large barriers, log N,. Explicit
eVailliatil OFi if tIi, tunne1linig emitfol)y yh 1 ds Ili N0j A/4 where A is the area of the
I-vent horjzin xx. Ill this waly the horiziion thernmodynanmics of Gibb1 ons sand H aw kinig is
re'coveredl. Bumt ti pt resent, ai pproachl has potentially add it 101al inforim ationi.

x

Figiurei I. I)I11wily,lgi "Ii aý mmiirlativ is ic "clock" lbi (ithrgy oi Iii, itork A, i.ý
rpe~ by Oui' dii ,lwd~iii Im ()I it leP. 4-1 Xlhv Cuiinig posit ii Owi clock is well1

rt-pr..-aiitii by ;i torwxord wavt dflpit..i hiere by ua ýighi airow. Oil the right. ofthfIn
iirniiiig poinit. b, Owi nituildiliI:0ii of die finrward waive andi Hiei lar iotiomilal,:ot

Thi il ttiliiij',n tiit.iroly Ilit N, iN ill last. anaixlysis ani iff-tet of qxaxlliminlliHuctiil-

ity Wouildl apiwala ill I iiiiit (lipec diixirijit ii iittltiltig kjLý:;ol11(., WiVeS, thliS iijtxrojty
'ultold In vxplwesxilc ill teiintx of ihimait y if stiatex Ut tx~iAtt~i xWid grait~ly. 'l'twilVielng

Wa'tve Iiiiiitliii ofi spalixiiliii to itiliimle ill it~s iliximipt iol timec otlo1r sidie of' tOw liammi(r.
lhis call Viild ;I t-i'mvoir of' (ilttittl1iiix stxmtcs Whttic Ila', plliV~dv, itxll ditiioit to) then
(Ixt(A/'I ) staltis bdinigiilig tb iitiiiiy, reSidltixl stales, which votill bie vXplresmtd wx: all
"iiit~rgramt.iwli n~ittttt t.'' hi Owti tot~al ont~ropiy S of Spctmiii.iiiio. TIlmi Wc shall writic

LI - A/4Ii ( ,(2)

adIr to l (Ii ýiol l it l~ ti i ; i-iin h abu Iiiii ( t m'ttist-aiut (1 by alilnly'siig, ml-ttl sidcs of tuec
I I; ITi r I-

HItu hoowedppii (F iý: (11iicittI, Ill litt iii Olet~ titlrcAt.xitttldiii iii liii black
- ho]' belt;i6'iuiii at Owii fina~l :itigi utf iiiiloviiiiiotg.
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A infinite ldy lar~ge valu1e of' U wou~ld( indeedi~ ind(icakte Niali (.tim ei'\'4444 tio4Il cal'

Sof,0 availableil'ltll'liaI stati'ii. Tis Inisml1ia4;tcdl Wmld eni(. rely modif~iy the black holy

e'vaporaltioln jiiicesiii al its last st-iigu ald liv'ing dici decaiy t lit 1 i11t.. Iiili'i'i whl' Owi

thalt, isii (. l('liiianlt withl liliflltt' dl(g4'lii'iiiy. (Causalit~y and liliiiiI luit~y prei'i llt. d.11 dvc'ay

u1('tFI)' allt such( ts4.4 Ii'l' IN i li*iv, (i' a ii iii'cki si t~ale JAI,) 4of Iimite s'ize an liii ! fi4144 it

decay /\4411ii1' l( isp id iiii) ilh' i iii 4 l4illit 4444 ijlils ij il all apprIii' il"itcYiri Iat. sqcies 6111i

background,'i thiet tuta. mii i mbe ii144144 ' posi b t le' fina jl(ori'lt.s iia' 444444444 is limite ili'g( ll4 ti
Ciltisid'4l /')i li'Ci4ii ViiI~ 010 111111( (" T a.I 01 iiog lial jiii s i thid lla .iii 41 4 4k44 4.oiS llill' t1(4

coi parel44441 I ill the P.lanck t ~i' lii' I W li~l~l lit.X (7)1 i4 i it(i444 1 fi li444 1111)T .hii 1iik Iitly 1.1101i1

hildCSO 14 f Ilt dl isii 4 1 l[. l 114m4 of' jiij \'4lli' uI.Ii spac x s'u Illh li iii ti ll. ij414l4:ii1114i'

si 144'; 1 (11' ) V I-) wiii , I4414 M 6iii ; :d~'i4iil.ilIt tillil T 0 M 14444 eli l 1 I C I iil )TI'pic

I1414ll ll i ed h 44 1 hemj., i.iii ull i iiiii 'll ,11,%ltl '11 iý- c w i klc ~ r

tilol dlii l y (m)]4i beivlrd l li 44 i' iii44 )4iiv i 1'cIii I,' tuicilC i ci r~io'iiiltu. Im.-;
11 4v id Ill' vvi. 4 Iiiwillt io4 ii Ad, 4)1 O lt iii' 1111h r ilii(Iiii iilisii'o p444441 w 4ii-44 i44 I l cw4444ol

he';xj gc ' .;li i44 4'll 44 Ii. 14lill4, 44444ts .41 iliiiilits o ' 1144' scoi c dec44 il4 ying bhl4 Iiu44'

iilwi s, u Ili V( 444i4Ill~i'-lac h) d4141 i'4 6111v 4Iio 11iiir c ay( 'nlj i til ) , i di i44' i t(' PIi? t1 1 ,4
sie illt 44114 oilli -i lii ~ ' 11ii hi4 4 l4 lml li;teI~~ l 64i4444444 14 1 1v \ is g wirii i' 11%4444 Vi lh iih

On444 liii ofn her14 Ilmi',it~i' wr 444 liliic va44/'ll~i'lfCN(iti44144 4'4'44 Ill the d 4,1ppu rlV4i 414

v 1441 4l of,4 Iiiii ;hiI4 ii 44*4 N\ 4 4444l ('Ill. lli44l4444j , 4. 'v I 444,I't ii4 ut ~ 4 /

4'4le 1)11l coS -i 41'
4

4t4 oii' %% It ,t a ila l.1 il w i " 11
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2. Tunneling amplitudes in quantum gravity.

Our basic action in four dimensional Minkowski space-time will be

, = Sg r.. + Sm.
5

,fttr (3)

where S,9 .,u. has the conventional form (G = 1) :

Sgrav = - J-I r--Rd4x (4)

and S,,nair contain .Atfficiendly many free parameters to allow for tile stress t°'nsors
considered below. A possible cosmological constant term can be included in the
matter action.

Figure 2. Tunieling in quantum gravity. '[he two solid curves represent turning

hypersurfaces E1 and V2 separating the dark gray Euclidean region F from two
Minkowskian spacetinies depicted in light gray.

Consider (}"ig,2) in general two spacelike hypersurfaces 1j and £2 which are
turniag points in superspnce (or turning hypersurfaces) along which solutions of the

Minkowskian classical eq, atians of motion for gravity and matter mneet a classical

solution of their Euclidean exten.-ion. Ll and E2 are thus the boundaries of a region
C of Eucliclean space-time defined by the Euelcdean solution. It e can he continuously
shrunk to zero one .an span E by a continuous set of hypersurfaces rT = constant

such that T,• ;',,, o 'Z1 and 7e = rT,2 o01 1 . These r, = constant surfaces define a
Euclidean: coordinate system which we shall call synchronous; the Euclidean 1etric

in E catl be writ.ten in the focm

(.q2 = N 2(r, (T' k) (r/ + 9iij , ,14) d., dW' (5)

where N(rT,';.) is a lapse fiunction.
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The Euclidean action S, over F, from El to E2, is obtained by analytic con-
tiniuation from the Minkowskian action Eq. (3) and can be written as

Se(~22,dx - H 9 d.+ J~~nd'x - ') J~~f~dr

i £ £(6)

- h- J [(0jN)gkj V/ý d4 X.

Iii-re fl'U and 11'" are the Euclidean momenta conjugate to the gravitational fields
qi, and to the matter fields 0a; g(') is the three dimensional determinant and the
/ symbol indicates a derivative with respect to T,. In the gauges of Eq.(5), I10 is
expressed as

IP)' ý2 ig, M 9)" -qn)g ....lg:V", (7)

On the turning Iiypersiirfaces ý;j and E2 all field miornenta (ild)are zero in
the synchronous system and the third term in Eq.(6) vanishes, The last terni in
Eq.(6) also vanishes If the hypersurfaces .12 and E2 are comipact, but may receive
contribuiitionis from infliniity' othnerw ise. In thiis case, we shall assunicn that t iiruing hy-
persurfaces merge at infinity sufficiently fast so that the Euiclideani action E'~ 1, )
does not. get. (ont~ribuitiouis from the last term in Eq.(6). The classical Minkowskiat,
solution inl the space-time MIt' containVing 1; c'anl be represented quatia it mcc1 lncianii-
eally by a' .forwa rdI wave"' soluion mm l'(9), (P.) of thfe W heieh 'r- I W itt Eq.( 1) in. the
lianniltoni-*Jacolby limitit. At L.this wave function eniters, in the WN B limit.. the Ell-
clidean regioni F and levsit at Y. -1 to pe ~net rate a new MIin kiwsk i an s pact'-tiine A42 .
T'he tuniminel in g of tfi(q,.~,)th roungh 9 eungi t-ders iii ad dit ion it) th -nforward wave-
solution a timne reversed "backward wave" Thne inverse t-rainsmissioni coefficient Nu
through the harrier measuires the ratio of the tiornins of the- forward waves., at 1:2 aind

*For la rge N0) tine, ii i write in t he synch ronous systemii

N0I - exit -2(1 li' 9  x + J u ý:. dir)]()

As all suirface terms in Eq.(6) vanish inl this system, 'q,(S) (-alt he rewritte'n in the
conirdina*ti- nvivarjaint lit in

N, e'x12S(i, !;fl] (9)

Let lks cxanmfiin flit' cast' Where' the Eulclideal n iisufliold C is static it. t hr senlse
Ii at it ad n nit> ;, : iii g sy rm n'etry. We t-an ntake adlvanit age tof' tli covarialice of

tilet action Si 1.". ;nr vxjrnss it in tcrimci l,f it new "Statit " itiirilmate systemi, po, 1)1ly
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sitigular, with nitoniviita everywhere, vantishting in E. lit this way, niouiritta in Eq,q(8)
get sqnt't zed into the Ilast.s lirface teji nl of FA 1 (() afidt tot, gets

anl)Iitlitild will i liven to- ipt 'Iti totiI this sjiifjc-to e -I e ()Iloly. -vetiI when-t the static
Itarantvit ristt ii i.,i sin u i.

3. The tutt ling entropy iii de Sitter spacetinie topologies

.............
. . ...........

Fst IIUale 1. - . -W i it I -Ia ~ ' 1 t Ii t , Nv IIi t I t. I t I - ii- c t il Nhit I o Itiwsliat I of o 1, t 1s n -lit

t li, I -'c it c 01 - iltd g'J4ill ( 411'1 lil Il II,, k ill lis ll. ýlolld7b

\ic~ ~d t, hf.I at'la ipj ll '.1,0v if ilt titoli i Ili~ li F~. ( )ý i plvs he Io)



179

descrilcd in a synchronous system by replacing in Eq,(1 I) T by -i7-,. This yields thle
Euclidean scale factor

rh

The hall . here delimited by -7rrh/2 < T, < 0 has another turning point at,

say, the sooth pole r, = -7rr'h/2 where a, = 0 : in thle above synchronous systemr
the space integral of the momenta. inl a Te constant hypersm-face vanishes in thle
vicinity of this point and so dloes the third termr in Eq.(6). The half-sphere conside~red
constitute t~he dlomiaini E through which a "wormuholc" at, say, (1, = 0 is connected by
tunineling to the de Sitter spacetime. The inverse transmission coefficient N, call be
straightforwardly computed from Eq.(8) using Eq.(7) and one gets

2 o, f 2 " I ( Il

where A is thle area of the evenCit liorion.o

Thew signihiclice of this resilt, is best appreciated whein the 1 -sphere is dei-
scribed inl static coord(1ini tt es,:

41. (I 1. 1e ý r ) (12 .1 , /1.2 1 (b17, + 1~ h.' Ill).

In this static friiall mujoiflieit a Vanuish everywhevre onl the sphere andi the tIiuiiehlig
is (xpiiessil de by 1 lie stirlace term l,,q.( 10) oiihv where tile radlial iintegrtititi is carriedl
fronm r 0 L)o I I,,. 'Ilhii' 1Enclideami tunle is pieriodici with period T- - bnij,.
ht siiig E. 10 ) withl At,= ( 1/2)7- -I - mr1 .,onle recov)%ers t' res1 l 1'' 1 .(1-( I :

It is now% vasy to verify that the equnality lihetweil thein ilvei'e tr:2 usuiiss;ioii

coefficienlt and exp( A/I) is imainitainiediyll wOw tIf. dsithten splocetiluic is Twit timlod li

., hricallN sviniuetrno stat~ic ,iiat~tel distribuitions". This est uldishies 11 kaililit~v of
FqI.(H1) for tlnsi' gceiiralizvd dle Sit ter spacct imeil-.

Lot. us t.w'tit a vlyv lmk liin(lan\ c'uuitiois, in field shoicu bY assigniing plire
lorwam d Waves "i theIn wormhoileht turning poilit . Ih lijrobabilit. 'V of lii ilui g '111 exp lad
hug geinerialized dc S-,it ter ýIiaeccinio for ;t coini'sponiiiiig wormholeht stat 4 is Owini ANg.
siiiie in the classicidlIiiiit interilenuceis between spacoes evolving forward or hacikwuurd
ii tinm' muiist hbe negligible. A:ssuminig that all wuol ii le st ates are equially problableli
We get fronm Eij. 13) thlit. thle relative probaiihmiiY of liilidiog two mlunit iolidigiiiationls

Ill fari., ami ],,il ml i tie titt-sph i can be u.iakii: as Ltuing tuviYuiiirtsc
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in the gencralized de Sitter spacetimes is

-)exp 1 4 - 4

Integrating the constraint equation n = 0 over a static domain of the Minkowskian

spacetitue one gets

.2 -f 1--/gIRd 3 X + 1irnatter + TA _ (16)

where Hiate is the total matter` energy. The variation of Eq.(16) yields

T- 160mi" (17)

where A~ labels tile explicit dlependlence of ()It~, o all other (lion gravitational)
"external" parameters. EqI.( 17) is the dlifferential Killing identity of reference 13.

It now follows from Eq.( 15) avid (17) that inatter configurations with neigh-
bouring energies in a static patch of ;vgeneralized de Sitter spacetime would he
Boltzmnann distributed at the global temp~erature T provided our ignorance about
wormhole states allows to take themi to be equally probable. Thus the tempera-

ture of the static patch is T aimd therefore Eql.(17) also implies that A/4 is (upl to anl
int gration constant Csi.,)the entropy of spacetirne and that, thle latter is in thmer-
mal equilibiu mi wi th th e sII roundinhig matter. As the entropy m ust. he anl iut rio sic

property of spacetinulm, not only is equmilibrinum a consequence of the chosen bound-

ary conditions in field space but the c:onverse is, also true: the t~emperature obtainied
directly fromn Eq.( 17) vitli thle spacetime entropy hilvtificul ;Ls A/4 + (,dSile,, mUs1"t
agree at equilibrium with the thieriial (listribution generated fromt the field boundary

conditions. This justifies a posteriori the above choice of boundary Conditions

TIhe tunneling approach to the horizon entropy and temperature' 12 used here

differs from the analysis based cithe Eticlideari periodicity of Creen's fuinctions 8
ill

two respects. Or tile one liand . lie presenCt approach yields the thermal spectrumn,
and then the entropy, from the backrcaction 01 the thermal matter onl the gravitational
field, in contradistinction to the Green's function approach. Onl tile other hand

however, the thermal matter conisidleredl here is taken in thme clas:isical limit while thle
Green',; 'imiction miethod describes genuine quant.i mi radiation. Both methods fall
short of a fully consistent. quantumn treatmenmt of the ba~ckreaction. But as stated
in the introduction the present. approach may uncover fromi the hidden side of thle

barrier a deinsity of si.ite buildiiig I lie full entropy. Unfortunately, for the de Sitter
spacetirnes considered above, thle Ii indenl hide is a we 1lmule whose descr iption canmnot

tup to changes which would not alt-er the probability ratios in tile large N] hiinit.
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be achieved in our semi-classical approach. Hence, for de Sitter spacetimes, we do
not gain at this stage any information on the integration constant G'deSiftgr which'
measures the density of states left when the full spacetime reduces to the (planckian)
wormhole. As we shall now sec the situationt appears quite different in the case of
black hole geometries.

4. The tunneling entropy of black holes

A Schwarzschild static patch of an eternal black hole of mass m0 is described
by the metric

ds 2  d(1 - rm0 ) rt -(1M- no_)_ d,, _ r2 d .Q2" (18)
7'

4% T

. %. - "

IV

-- 11e

Figuire 4. The Kritskal represvintationi of it 1bac~k hole, evwiihually surrouiind,,dI by
stattic linliaatr. The heavy so~lid Iiine delinoit~tvs a 4 hyp.-rlolohI anld ldhc t~hin owit
wornihole. The Euclidean donviiain F coiistil, uted hy a hitf 4 sl,hlre- is deliniat, ci by

a daLshed lint. TI'i, dol~l.ed circle is d.h t~urnhiig hypcnrsn'faiCe T 0 (I

Surroundihng the hIack hoh, liy stal,ic maltte~lr gellcr-id~izes lq.18) t~o

d,•: ý hio)(i'7)(tl.2 _ !111l ?.) drJ7. - 1'2 (1tý'12f}

where in abI;vlct- of out,e' horizon )1c has

aI'
?" -- CD f(ll('} •-,q ll r) -- I 7Jl4('0

I- i%
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Here Ml =M'(-') is the total mass and

MI(r} Tno + J 'It 7T o(z) dz7

r

goo(") - -2 cr)(Xp [J(a-A pj )87FZY 1 1 (Z) dzI

Thle nmet ~ lj ( call be extenidied to the fou r quad rants of a 1Kr iiskal spacwe

and we cihnose iden itical matter distribhu tiomis ini the two Seliwartzschld pal nitel1 to kcvp
.. two-fo]ld symnl et.1 iv unni i the 1K rskal time' axis. The' 1K nika d jaram is dli c ted

in Fig.4 wlbei' we have al~so indicated it~s Fl'Iiiideali extenlsionl T, .1 i lv;ti it g Ioj

the analytic cont~ionuationm oA the stat~ic iiietric I.(19) to Own peiiodic tiinc t, -- it.

2splu-w andu Ii c ciric s pall 01v I-1cid.t -all liliv 1. T, Iw heav)y s ahi, lilic is Ibc

Tlic Eliicli~hiii pciodiilYi is

T ~ ~ ~ ~ (r [y2,,OyIj(m)
Ilulhd
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The Euclidean extension of the black hole surrounded by static matter is rep-
resented in Fig.5. lIn contradistinction to thte de Sitter case, there is clearly no WI• L
tunocling from a wormhlole to a black hole because of the mismatch in topologies.
One is therefore lead to investigate possible tunnelings between two black holes ge-
ometries (B.H.), and (B.[U.)2 constitutedl respectively by black holes of mass Mo
ani rnt (tn > mao) surrounded by matter. The Euclidean sections of (B.11.), and
(BIi~I.) 2, dcpiCtedi in Fig.6, are engendered by a rotation of half a Euclidean period
of thv hypersuifaces a, andl (L-2 labeled by T =0 in their Kruskal diagrams.q These
are turning llyJersurfaces along which Minkowskian, and Enclidean black holes meet.
We now search for two black holes such that a, and `7 2 are also the boundaries of an
Euiclidean solution E of thle Euclidean equations of motion through which tunneling
can take place from one Minkowskiaii iAack hole t~o the other. A necessary condition
for this to liappeim is; that thle total mniiqs iv. Jf tile two b~lack hole-inatter systems, and
their Eulchideaml period T1 b e thle sam e, so that thle turning liyjmersirfaces ,it and
(12 of tilie two geol 0' tries In erge at sp atial iniili ity.

a

a2

1~gmr ~ilic u liiiiiigliihglr' 1 r~.is h Eihiham e tui~ iftI

ai hhkhe li s(1.1) ilic b ~ii usiiI einwoei h~r

0rt r s is. i. iiy ~rjivit ~iriig hyeuuli'ii(1 iIi

aiv~~hiI~ili iiiiv iieiii lruu ije~ifi i I:tu

iuivi'um~ ijr. ~ts a yjrifi Iuhy I iijiriujii fi ; d n
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Let us choose identical matter distributions outside at radius 7-, = 2nL +I 7. 1`
is positive and such that the mass of the matter between the horizon and r, is 0
for (B.H.)2 and lthus mri - mo for (R.H.)1 . Keeping mi and the matter distribution
outside r, fixed, we niow dlecrease in.o towards 0. From Eq.(23), in order to keep the
Euclidean period T -' constant for (RH.)1, we, have also to decrease ?I towards 0. As
7J --4(0 the mass in-rno surrounding the infinitesimal mass rno in (B.I!.)1 approaches
its own Schwartzschild radius. It then follows from Eq.(2l) that goo(r) tends to zero
for the whole interval '2riq1 < r < 2mn. In other words any frequency stemmuing from
the neighbourhood of the small mnass hole is infinitely redshifted by the matter in
that interval, as enicoded iii the daraping exponentials in Eq.(21 ) and (23).

It is clear, from the static coordinate description Eq.( 19) extended to En-
clidcaxi times t, .-- it, that the Eniclidcan section,, of (1).HI.), 41 i (13J11.) 2 Clcincltc

for 7' > 2mn + 71 holt while fur U1ILII.)2 the Euclideani section termlinaites at r = 27n,
f .) presents aim extra "ileerlil" in the regioni 27ioi. < 7- < 27m whose 4-volume is

vaniishinigly small1 wwiiei il -~ 0, As we 11(W Show~, t~his is wilee1,11r' thu icig l)1twr'7ll

To thiis ('f'cct, follow in g tile niotat ion1s of section 2, we id(indA fy at fin itI' 71
the first, turnling liypersurface 1, through which tnuuoiciiig tkews place with (I, and1
consinler instead of ;I seconld tiurninig liypursurf~iwe YZ2 a Ilypeisuirflus a'2 which lies ill

the Eu"1chideanl sceltilll of loiAll (M.ii)ad (1?1.1)2; thuis 7' is gireater Ow n 2'n. + 71
everywhere o oll 2(. Wi ieiiit - 0I, We call chloose I eilorbilrarily C IO Ls o ui *( Onc calln
then) prove 12 thalit. 1i1 gIViaoiiajlt~OjI llloihlenlta vani~sh inl this limlit oil I(! ill a. synchuroinous
llysteill. We maliy tlivii idenititY (1' 'Withi Y12 ll region E is thusI- contlained( ill the
needle 2m,u, - r < 2i~.-m- -. 1/ Becili se (of the 1 uiskal twolold symi lltry (Il is m apped5

uiii, itself by .1 1ýIhclidvaji tilile rotationi of hall' a period ;1111 thuns, t: .90111 only half
the nevedle 4Vnlunii Fe, romimlj() we hoarn thalt the iliverme traniisnission co('ihicicri~t
No is simply the~ exponelltial of tOle total EuclidIeanl action (of the nieedle. Altlholl 1i
th~e limriting 4-voluniciu of the iwedle vaniishes, the action will turn notl to ien' ljitu'. It
is ill faýct. ('oml~lpl~tili ai' S thel dhillference belt.We'll the Ficliih'uii a4tionls of' tue two blaick
hloles. cut,. ofl at tHic arihi it-my niuliis r,~ grcaatr than1. 2,m1 lbcllauI "... two gi'ouiiitrics

We tills wYrite

Tol evV;lIhMiatfl'icusc ;lcll~ls) we take lulVlIl~tltg 01 hl' UI OVi;liilIIA' tCO VIXMiliSS tleii ini

tei-rms of, till, stil1ic co dOJlilliltl' systeciui IF.( it) with t - it,.. Using F'h.( itt) and1 (22)

andli till filct, thtillt. till'ilt'gr~llIld iln h",j.(10) is the sclhill att r',. for S ''ý and for

W,' get

N0j -- CX- [471-7u1'2 -- 4 urmn1.(71 -ý ti) (25)

N1j cxI A/4 (26)

whlere A 1 67F11 i%2 ~ till area (of the l'voldt horiz'oni of thme 1 lck- holie.



185

We have thus learned that black holes are related by quantum tunneling to
another classical solution for gravity and matter, namely to a "germ black hole"
of infinitesimal mass determining the spacetime topology surrounded by a static
distribution of matter characterized by a vanishing .qoo(r). T'his domain of space-time
is characterized by a limiting light-like Killing vector. When the space-time geometry
presents a 4-domain endowed with such a Killing vector, we shall call the domain
an "achronon". All spherically symmetric achronon configurations will exhibit an
infinite timc dilation in the Schwarzschild time t, or equivalently massless modes
emitted by the achronon are infinitely redschifted. Classically, the achronon ha•s the
"frozen" appearance of a collapse at infinite Schwarzschild time. The difference is
that it is also frozen in space-time.

To see that achruolts ealn indeed be constructed, at least in a pltenomenolog-
ical fluid model, we shall build a shell model with the required properties.

Let us considviI a static slpherically symmetric distriblution of matter so r-
rounded by an extended shell olprijised betwen two radii ?,, anld 71'. Wc delitte

VAf l/b TI',

2(11, 1"l'• /2•

where p# - -'TO and pIt -7'f'. Assiuming p1 - O, one may perform then thin shell
limit t-, - r',, I? in these integrals using Eq.(21) anld the Blianchi identity

I )187rr'jp J- 2M(v)/r I + 1(28)
S-I - 2A'(r)/r 2

One then gets

1 7r 16Y1 2s 111 2 It U?)" -27o./ If) (29)

-ir/ 1 I - m/?. 1 -- 111 -/l i ) (:m)(1 2, !//?)2 (1 -2m -,It l?) 2

where m and ft- an. thc vwlues of AI(r) respectively at r7-b and r,, and t11., - M -M-
is thus the ,nea.s of the shell. Eq.(29) and (30) are the standard result 14, As the
radii!, I? .;ocr•na'has 2m, these solotions bec1ne p1 hysical ly niCaninghlss whei fie Ibe-
comes greater than itr: this violates the "dominan t energy c'o,,,dition"'', implying the
existi 'ce of observers for which the 1t oltteluttin flow of tIn' classicai tat t m't'I. t(,'tles
sjpacelike; in fact, tlht' shell is Inechlnically unstabhle even hefor,' this conditilo is
violated " I.

The divergence of '0 whien Ii -ý 2m appea'rs in Eq.(30) bt'caise of thf- vanish-
iig denominatotr in Eq.(28). Eq.(30) de-pends however cruici.lly oi the radial pressNur'
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being zero inside the shell. Relaxing this condition it is possible to avoid all singular-
ities of the stress tensor as R -i 2m by requiring p, inside the shell to satisfy, before
performing the thin shlel limit,

41rr 2p ±i MM =r 0 (31)
r

This solution is unsatisfactory if the (extended) shell sits in an arbitrary background
because of the finite discontinuity of the radial pressure across the shell boundaries
which would lead to singularities in po. We may ensure. continuity of the radial
pressure by imminersing the shell iii suitable left atid right backgrounds. To avoid
reintroducing stress divergencres when r b approaches 2M(r b) these should satisfy (u +
pt) = 0 at the shell )0ib uda. .. One can now perform the th in shell limtit. Tl le finlite
dlisconitinuaity of' pt (t) at r' - li'tI(1 now tot

1)0 -- , jj 0( (312)

instead of Eq.(30), while rý is still given by l'q.(29). T1he dlinitititt energy coiiditioni
is now satisfiedl evi ry where atid 1provid ed thle background1( is s ttioodi~ 4-xight ginu thle
neighbourh ood of the shell, noi stress dlivergentce's will appear w hien it ap)proach es

the Schwarzseh ild radin~is. P erform iin g the explicit integril ion ove r the shell ill tie

exponetiitial ter in in Eq. (21 ),one( gets, for q~ r)iithe rigioi 0 <I r < 2no.

2M (r) -l- 2m1 1 1'b +i'Z41. (1!jot(rI) -(0 - ~ ) F - iXj + 
2

7-/ldn(

I lere. the radius I? tof the shill1 is taken at It 21n1- 71 where q is a polsitivl' itfittites

it tal and the' synibol T. iiteans, that ldic iiitegral is Iltiriell ov~er thei rugttlar iiiatt ii

contributitiit only. Olearly, g11 1i(r) =O(i;) for 0 < r " 2mn, I arbitrary and thev ahove
imatte'r dist~ributtion cotist-itiites indeed an tcltroi'oit.

We. now telatef itl gitllrial the' Imiiiiiliiig as enicoded1 btY Et.(2(i) tot the IladsIý hole
en tiopy. Tlhis Ca iL ' bei done 101Ii i ig Iilf anialys is of i1.ii de' Si tlc.r' case. Assuni il all
states foirmied by ailhrikolis (If matiss m smrrounded by ttatt er conf igturatioins of mitjss
Al - Inl, Al fixed, to be equally p rolodde. T!his am ounit~s her" ito asslit t e thle validityV

oftetti crocanon leaf enselithh' as acich oiou r an he' vii wed just LN liii 1ipS of orditiary

ii attcr take'n on t from th e su1rrotndini(iigs. The relative probabhili ty of findin i g two Iblack
hicle ge'omtrities for a givenl total iiisss At is thieti givenl Iy EAq.( 15) with At I and ,I(,
ideiiti fied here w iith n Ow larký hole areas. 'The 4 ifrereiilial K ihlinig iden 'ttity l'q.( 17)
follows as before from thitle iitigiateil u0 st raii t eiquat ion, tw ona' ((IllV4ife[eiece. beinig
in general aii adldit~ional ti'rini hAl on Lt(- right. hand side arisintg from it suirfatce teri'i

itt spati al itthitity. As At is kep t. fi xedi this te'rmt pla ,ys ito role anii I h. 171 reminiIbt s

val id as, s nel. T'hlerefore, ini aiialogy' withI the de Sitter ease, inaiviae confiigiirat iollS
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with neighbouring energies inl a static Schwartsmchild patch of an eternalv' black hole
surrounded by inatter have a lBoltzmnaim distribution at a global temperature T.
The latter now coinicides with the local temperature at spatial inlinit~y. 6A14 is the
differential enitrop)y of tihe hiole and A/4 is the amiount of en~troply transferable to
matter reversibly, 'I'lie total black hole entropy is

S - A /4 + C',j. j. (34)

where exii Cui. 1. 1 neasu res th e imn mber of (Iuantum itstates of at r('sid i al pilaneckian black
hole. The boin ilary condition in field space at equ ilibriumi are snc litba~t tI e wave
functional of an eternal black hole has, a smiall amplitude describing aii aclirotion conl-
figiurat ion whose reliative weight, w.ith respect to thme classiical bldack 1 mb' coil igurat.imi
is of order exji -( A/8).

5. From aclironcoim to lplafckons

We imow discuss the( niature aud thle signimiicaimee of ('I ~'i1'ii' enitropy A/1.1
w hid. canl he exci mamlgedl reversi 1 )y From ii ba hck hole to ordnliiiwry iiniat ter wa; lederived
ill tile prl'cedilig, s'ctioli fromi thei existi'iice of it "iioteiitial barrie-r" liet-weeli a blackV
hiole of Inals 71n amd anl aciroiioii oif thle 55l11(' mass, Tihis wats domie ill ftin umitexi. of
eternal blac'k hloles admiittinig ~it \riskal t~wofo-Ild sylimiiexr, so that. t liiire an. ill fact
two aciirnluiils illiihi'ided ill two causalaly iiiscoiiilertell Static spme 's. Wit bin i'io'l
space black hlob- mchronllol states aire ill tliernilal e(illilihriiill Witlli t heir 4iiiminindiligs.

We are therefore led t.' pichlire ill such a spa'm it (i1liatmlili 1 lack lli;II' eigenlstate ,
iii the se-mi-classical limit., as a Iqiimllt-1 li aIlwlliiisitiolui of two colmeruilt. ( imonlnaliz'd)

states, j l.an d JA) r('JprI1i it~ilig respectiveIl' a classical uhiack- holeu andi a classicl~l
achiroiioii Tlhe relati ve weighit of I. ie two st atecs is appruox imiate'ly, 111) to it phialse.
cx p( -A /8) . It follows from iidetaIi ledu bala 1111 at l'I 1iibillji) 1 IiltWIN'ii radiaiteid Ii at.

ter anid tiii blatk liode that te. %miiii sill'iierosit~ioim 'hioiild holdI hll al thii'la iii~V lioih
who Wouild onld i' iiiit. (and~ niot, iii-eive) t hirniial radhiat~ioil at ille i-qulilillriuiill teilliper
ature, As a black hole formied Fromi votlaliS(' inldq'u'Illiit.5 Such 11 it I hienal tll WeA'
oiler that a ciml apisiiug hlack hole is a wave packet. toriimid fromitiI supe'rpositilon oh'
I'igenstates (') whiich conitainl ali achir' olio colupiuil'l.l Wilithe tilName1 i'gi as ill

thelrmnal vypilihmimun. We' t11m: write

K') jU11.lI.) +-t- Xp(- A/8)I.'). (v))

'lo a rhassi( al single blhack 110ic 1J itligii rat ionl olil' 01;' as551 no t iih mall (ldist incti
riasicah achrommun colliginuat.ilis. li ill'th shivil mlodel, for is d0' thelmi.l alel iltmiiitl'h\
mnanlydistiiict classical imat~ter c(illfigilratiollis oif till"' aliil toltal mas15 mi.li' mliIit
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of the formn

111inaffer= V~~o (.gj I1,, ) d3 X (36)

and all its cigetivalues axe squashed towards zero by the Scrnvarvzschild time dilation
factor V_0 thuls gelitrat ing anl inf initite not unher of orthogonal z~ero~ vue( rgy 11no deS Onl
top) of the original achlronoti.

Th e infinity of zero eniergy inoit les arounid any backgrouin d inmp lies an infinite

degeneracy of achrottots of given mass and thus anl jidfitity of distinct quantum black
hole states of the Salle mnass differing by the adtronon component of their wave
functio~n. This infinite tlegeiserac~y of the quanturn black hole proviib'tt the reservoir
from which are taken the finite etiniber or "surface" quantumi states exp) A/4 c~omintei
by the area entroply A/I transferable reversibly to oiitsiile matter.

Except for providinig ra tional for tHie large bilt foolte tecstabl e eit-ropy of
the black hole, achiottois do not, niodily the behlaviouri of hurge lnto'ros{'upii' blac'i
holes. I lowever. Whenl their onisms is reuedly lvvaprluritioi tll an approadces the Plancek
mlass the barrier dhi~sappe1)ar" n t(i~l (alltilin slitperjpositionl r ip~letily nixitis the two

compone0niit~s . Of coil rse, tllix is tnels that both the dlescript ionill iteir, is 01 5(ichussit'iasi(t

confliguratioins andt of tim tel ing dis appeaors. Wihat remi ni s h owever ais a cons~iseq ice, (

of uniitan ty, is the inini i ity of distinct, orthiogontal qi iant itin states availabdle whtich hiave
no couniterpart ill td ic finite numbeii i r of' decayed state~s, Th'e qu itutitim b lack htole hIuts
btccoile a planckon ", thtat is a I'Ianckian MtASS Obj(it, Witht ilfilliit,i' dllgeilerai'y. Ill
tern ts iof Eq. (34 ), thIis initaxis th at. ill a, itsyii pto t wal y flhit bao'kgloiiid , thte in tegiat iol

coltstaint of the blac k liol den tropiy (C11.11 is inf ini t e. As discusised i it th in' t t.roduct ioni
this mcleats that ill sutih a lbackgrounditd generic jdtonckoti ;'noiiio dlecay ntir be' foriiiti'd
inl a finite tuite.

This co'ochiisioii lton'ever is cotttiligelit iiitii I lie Validity, 'it th beilttihit~atve
level, otf oiltt SvItii ilassical app)roiach. Thle 111ain lliestion is whtethier or' tot the quitit-
liotn backresct~iot iof lie lma t~ter onl the iitrvic lnoves tilie inifittite degetiviecy. Ati-
sweritig it. reqilires fotivii'e anatlysis.

F'inally, it. is OFi iihtelet to no0tv that. the jdaitikoii ollut ion to thin miitaiit vmt
problemi polsedl by N the evapoiratinig black hled woutld have, at. it ftidiniiatltllto hivdl
far reaichinig iitpjlicatiions ol t~he shect-t'iliii of qIltikIt IltII gravity. 'I'll(e ipeililig at .t titi'

P'lancik size of iii inifinite iiiiither of states. an tiilavoidakhdn tiiisequieille of t-he vx-
itotelicl.o' (I 1 ialitkotts. Ittay appteiar as a hiorvendohos coiilpicat-ion whichl coitld lilakke
qfialituilt gravity dofinlitely iiti lailigciihle hot hoipefuilly thtt co 'verst, iim% h' N te 1i'tt

Indeed plaitikolis shioihld tinke (IhllilIt Ilt NI'vit.V "tiltaviolet lilttl. Tl-ineIIilbert. spalon'
oIf physicatl statles available to littirost ohlm oblservei titost bci olrthlogonital lo illv ilitltitle
Set of States desi'nibiitg Plt io'kiall bootid States, Ihiiir wvave' tiitction atl Ilaiokiani
scakts where phistckoli ciiiligliratiilts are- coiienittrated are therefore expechtli to lie
Vanish ingly Small, lIt this way, pl anckotis willild proivide the ren jui i'd sholrt. distutlli ,
('lit-off for a conis ist -,it field theorevtic (csc rilt.ioul (i 4 I jauit'i ll graivmty Withlin it il 11111-

verse while leav ing m, Ilargest part. of its iniformta t ionl 'onlten IIthi(Idden at the Plhantck
stale.
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An operational formulation of quantum gravity applicable within our universe
and based oil conventional four dlimensional gravity might thus well be within reach.
Nevertheless, the sudden widening of the spectrum of physical states at the Planck
scale and the relative scarcity of states which describe large distance physics suggest
that a fully consistent theory cannot be formulated in terms of only long range
quantum fields (including the metric), and a larger scheme may be required to cope
with the infinite aniount of information relegated to the Planck scale.
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Black Holes and Information Loss in 2D Dilaton Gravity

S. P. de Alwis

Department of Physics, Campus Box 890
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ABSTRACT

The theory of dilaton gravity coupled to conformal matter proposed by Callan et
at. is quantized. An attemapt is made to interpret the resulting picture of quantum
effects in terms of Hawking radiation. The question of information loss is also
addressed briefly.

There are three main responses to Hawking's original observation' that thle
semi-classical calculation of quantum effects around a black hole, led to its evapo-
ration via thermal radiation, and the corresponding loss of information that went
into the hole.

a) Pure states evolve into mixed states. This is Hawking's position. 2

b) The black hole does not evaporate completely. A remnant which stores all
the information is left behind. This is the position advocated by Aharanov, Casher
and Nussiaov2

c) The radiation is not exactly thermal. There are subtle correlatious which
code the information. This is the position first advocated by Page4.

The first of these entails a radical reformulation of quantum mechanics and
in particular one looses the connection between symmetry and conservation laws.5

One should probr.bly show that more conservative options are completely ruled out
before accepting such a radical revision of the foundations of quantum mechanics.
The second has the problem that it leads to a an infinite degeneracy of states. The
third alternative is the most conservative but it is yet to be demonstrated even in
a toy model.

The theory of dilaton gravity coupled to conformal matter proposed by
Callan, Giddings, Harvey, and Strominger6 (COHS) is in fact a toy model in two
dimensions within which one may hope to gain some understanding of these issue.
In this talk I'm going to discuss the quantization of the CGHS theory and its phys-
ical implications. This talk is based on the papers of reference 7. Similar work has
been done by Bilal and Callan'. (The discussion of ADM and Bondi masars in the
last few paragraphs of this paper has been revised in accordance with reference 11.)

The CGHS action is given by
1N

S Xl daPj[-2 (R -I ) -4 4;0) - z(ývf )1. (1)
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In the above c is the 2d metric, R is its curvature scalar, 0 is the dilaton and the fi
are N scalar matter fields.

The quantum field theory of this classical action may be defined as

z [ /dgj 2 [d44W[df]9 istgg,'1j (2)
= - [Vol. Dilf.]

Now let us gauge fix to the conformal gauge g = e2p§ and rewrite the measures
with respect to the fiducial metric §. Following the work of David and of Distler
and Kawai9 , we may expect the action to get renormalized, except that unlike in
their case the renormalization will be dilaton dependent (since the coupling is e00),
Thus in general we may expect the gauge fixed path integral to be written as

Z =fdXIdfb([db]Edc])Ie'(XE+i5(J')+'S('cO) (3)

where
1iX,,) = -7L ,/i-[•?°G•'80 XMO~xw + A4?(X) + T(X)]. (4)

S(b,c,h) is the Fadeev-Popov ghost action, and we have written (¢,p) X". Note
that aI the measures in Eq. (3) are defined with respect to the 2d metric § and
that in particular the measure [dXA] is derived from the natural metric on the space
116X•,II = f dlaV -1yGp6XP'6XW.

The only a priori restriction arises from the fact that the functional integral
for Z in Eq. (3), must be independent of the fiducial metric 4, as is obvious frout
the expression Eq. (2) for it. i.e. we must have

< T?* + tdE >= 0, (5)

and < T+. + tq. >= 0. The latter is equivalent to the p equation of motion. In
addition we must have the integrability conditions for the above constraints, i.
that they generate a Virasoro algebra with zero central charge. This requirement
is equivalent to the condition that the beta-function equations for G,4', and T arc
satisfied. Thus we must have,

• = 7Zpv+2VD.•41 ., (6)
ticU =(7.+4mO,,Bv V IV ( + 2) - 26 (1

3 +... (7)

fPT -2VtT+4GPPO,ý*8$T- 4T+..., (8)

where R is the curvature of the metric C. These equations have to be solved under
the boundary conditlans that in the weak coupling limit (e2# << 1) we get, (com-
paring Eq. (4) with the classical CGHS action in the conformal gauge with time
conformal anomaly term added)

Goo -8e 2 ', GCp = 4e-2 , Gjp = 2n, fk = -e-20 + np, T = -4A•c 2
C'-P). (9)

The (renormalized) field space metric may be parametrized as,

i. _' __
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dS
2  -8c-20(1 + h(,))d4' + 8e-20(1 + '(X))dpd4- + 2n(i + h)dp2 , (1O)

where hth, and i are 0(.I4 ). If we are going to consider only O(e20) effects then
we should certainly set h to zero. But even if we consider the renormalization
functions h and W to all orders, it is consistent to limit ourselves to the class of
quantum versions of the CGHS theory which have F = 0, provided that we satisfy
the beta function equations. This corresponds to confining ourselves to theories in
which the field space curvature R = 0. In this case we can transform this metric
to Minkowski form. Putting y - p - c-le-2 0 + . f doe-'OW(t) and z = f d.5P(•), P(O) =
e-2[(1 + X)2 + Ksc2 (1 + h)]1, we have da2 = -- ad2 + 2ndyl. Then demanding that we
recover the CGHS t given in Eq. (9) in the weak coupling limit we find the unique
solution 4D = nj from the first beta function equation, and substituting in the second
beta function equation we get n = 14-;t. The third beta function equation together
with the boundary condition that we get the CGHS value for T in the weak coupling
limit then gives T = -4;kze- fx+2y.

Introducing resealed fields, X = 2 Y = ff -y, we then have the func-
tional integral,

Z = taX ltdY ]td~fltabltdcd,'sivY,fl+' . h....,"1

where,

- d'ur[:FO+XOX ± &+YO- Y + Eo+foaLf + 2 A\2 C+Výv-(.T )]. (12)

Now the transformation from 0 to X is singular if P(O) has a zero,But there
is a whole class of functions h and ) for which this is not the case (the simplest
example being ft 0,ý f == -•e

2 t so that in Eq. 11) the integration range goes over
the whole real line and we have (by slightly generalizing the arguments given ill
reference 10) an exact conformal field theory as is required by the general covarialnce
of the original theory. The equations of motion for X,Y coming from Eq. (12) calm
be solved in terms of four arbitrary chiral functions. Indeed they are the same
solutions as the classical CGIIS ones the quantum anomalies being hidden in the
relation between X,Y and O,p. By a coordinate choice two of the functions (:an
be set to zero so that in this conformal frame(which I will call the Kruskal frame)
one has X = -Y = -VW-•u -_a+r-) where u = u(a+) + u_(a-). To be explicit
consider the case d) discussed at the end of the last section (h = 0, A = --100); then

X =2Jf ~c~[~~ 4!-~ = /jft1A 0 i, and Y =v¶PI2 +ftc2ý 2lIK
In the weak coupling limit (-2# << 1) we have from the solution for X,Y and

the above, the classical solution e-20 = e--p = U- a)a+o"-, which exhibits tVi classical
(black hole type) singularity on the curve where the right hand side vanishes, But
the singularity is in the strong coupling region where we have to usc the si.-ong
coupling expansion (from the second line of the above equation for X) X f Vf2[o -

+-•
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Then we have from the solution for X,Y, 0 - -(u- A2 a2a-), and p _
±~K'lA'~otThe metric (e 2,) is clearly non-singular at the classical singularity.

The u+ are fixed in terms of the ghost and f-matter stress tensors by the
constraints Eq. (5), (for a detailed discussion see the third paper of reference 2). 'lb
proceed one has to make an assumption about these stress tensors. In ordcr to be as
close as possible to the original Hawking calculation6, I assume that in a preferred
coordinate system which is asymptotically Minkowski (Nhich is the natural frame
to choose at null past infinity Z+,) the expectation value of the matter stress tensor
is zero. This still leaves an ambiguity in the ghost influx. Choosing the latter to be
constant and equal for both left and right movers, and transforming to the Krusksl
frame by taking into account the conformal anomaly (Schwartz derivative term),
and using the constraint equations, we get u+ = a+ + b+0+ - a(u±+ - o4+)O(C+ - 4+) -

24 log 10+1, u- = a- + b_-a - I log joj-, where V = N + a - 26. Here a is an arbitrary
parameter characterizing the ghost influx. Perhaps the most natural choice is to put
a = 26 and we 3hall do so in the following. With a = b = o one has the quantum analog
of the static black hole solutions of dilaton gravity. The step function term comsc
from assuming (as in CGHS8 ) that the matter falls in the form of a shock wave. It
is trivial to generalize this to more general configurations of infalling matter. So
a- = b = 0, a $ 0 corn .ponds to a dynamical solution describing collapse to a black
hole and Hawking radiation.

One may now derive12 an expression for the ADM and Bondi Tiuwies of these
configurations following an argument of Regge and Teitelboimn'.

EADM = "2[•g (U)AY - AY']j,. (13)

In the above g reflects the freedom in the choice of conformal frame and is
zero in the Kruskal frame.

For the static solutions one finds from this that the ADM muass is zero. In
the case of the dynamic solutions one gets an ADM mass in these coordinates that
is equal to the energy of the infalling matter M0 = Aa4-+. Thus the ADM mass in fact
satisfies a positive energy theorem. However the frame appropriate to an observer
outside the horizon is related to the frame o- by v = oa- - •. In

this frame one gets for the dynamical solution,

EADM MO-ln 1+ +e _() __ NA.
24 '. A / RO 2 ~ (4

Thus we have an infinite value for the energy in these coordinaLes. It shoul
be noted that the corresponding classical solution has a finite mass equal to the
incoming matter energy. Thus the infinite value is a consequcnce of the quantum
radiation.

One may now calculate the Bondi mass (i.e. the mass left over after radiation
for a light cone time a-) to get
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ED -.0d() = M+ AF-.l+)
241(1+24" (-!4- •.A:-X-

- - (+ E (15)T4 A 24 (1 +•-•)•-

For any finite value of 7- one gets an infinite value reflecting the fact that the
ADM mass is infinite. However at -'" -- o one finds that the energy left behind is

equal to the incoming matter energy M0 . This somewhat peculiar conclusion seems
to be forced upon us by the conformal invariance of the two dimensional theory.
Since the collapsing mass M0 is left behind it might seem that the model supports
the remnant scenario3 . However this is the total mass of the original collapsing
matter and the bath of radiation was there ab initio. Thus it is not really possible
to draw any conclusion for a situation that one might obtain in four dimensions,
where one is not forced by conformal invariance to start with an infinite bath of
radiation.
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TOPOLO( ECAL PHASES AND THEIR DUALITY IN

ELECTROMAGNET'C AND GRAVITATIONAL FIELDS
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Columbia, SC 29208, USA

ABSTRACT

The duality fouad by Aharonov and Casher for topological phases in the electro-
magnetic field is generalized to art arbitrary linear interaction. This provides a
heuristic principle for obtaining a new solution of the field equations from a known
solution, This is applied to the general relativistic Sagnac phase shift due to the
gravitational field in the interference of mass or energy around a line source that hats
angular momentum and the dual phase shift in the interference of a spin around
a line mass. These topological phases are treated both in the linearized linmit of
general relativity and the exact solutions for which the gravitational sources arc
cosmic strings containing torsion and curvature, which do not have a Newtonian
limit.

0. Introduction

As is well knownr, somne of Yakir Aharonov's nrost faitous contributions con-
cern topological phases due to the clectromagnetic field. It is therefore fitting on
this occasion of his sixtieth birthday for me to present hirn with some observations
concerning these phases, which generalize naturally to the gravitational field. In
particular, I shall examine the duality between the Aharonov-Bohm (All) phase [1]

and the phase shift in tie interference of a magnetic momeit in an electric field [2]
which was found by Aharonov and Casher (AC) [3]. I shall show, by means of the
linearized limit and an exact solution of tire gravitational field equations, that both

these phas2s have gravitational analogs and they satisfy this duality.

In section 1, I shall briefly suninarize the Irhase shifts iii the interference
of a charge and a mnagnetic dipole (at low energies) due to the electromniogntic

field. These phase shifts reveal, , espectively, U(1) and S11(2) gauge field nsloets of
the electroinagnetic field. Bflt these two aspects are not independent: The ,(1(2)

connection which gives thre dipole phaste shift depends on the electric and niagoetic

fields mid us such are derived from the electromagnetic connection that gives the
U(l) AB phise shift. It is nevertheless atnusing to see a charged particle with a
magnetic nmomnent, such as nan electron, interacting with an electromagnetic field as
if it is a U(i) x SU(2) gauge field. Two topological phase shifts dsse to electric and

mnmaetic fields corresponding to two U(l) subgroups of SU(2) will be reviewed. The
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duality between one of these and the AB phase, found by AC, will be generalized
to an arbitrary interaction in section 2. 1 shall formulate a duality principle which

states that any two dual phases are equal under certain conditions.

The gravitational phase shifts, obtained in section 3, are special cases of the
phase shifts obtained previously [4, 5] due to the coupling of the mass and spin to
the gravitational field. The key to the analogy with the electromagnetic phase shifts
is that the mass or energy plays the role of the electric charge and spin the role of

the magnetic dipole in the electromagnetic field. The gravitational phase shifts are
the same as due to the phase shifts of a Poincare gauge field. The translational and
Lorentz aspects of the Poincare group are respectively analogous to the U(1) and
SU(2) aspects of the electromagnetic field, mentioned above.

If gravity contains torsion, as will be assumed here, the connection, which

gives the phase shift of the spin, is independent of the metric or the vierbein, which
gives the phase shift due to the mass or energy-momentum. Therefore, these two
aspects are then complementary, unlike in the electromagnetic case in which the

SU(2) connection depends on the U(1) connection as mentioned earlier. The electro

magnetic field and its sources of course must satisfy the Maxwell's equations. It is
well known that the solenoid which produces the AB phase shift is a solution. Sini-

ilarly, the gravitational field and its sources must satisfy Einstein's field equations
or a suitable generalization of it to include torsion, Fortunately, an exact solution

corresponding to a spinning cosmic string with angular momentum and mass, which
is the analog of the solenoid with al coaxial line charge in the electromagnetic ease,

can be obtained everywhere including the interior of the string.
There is a topological general relativistic Sagnac phase [4] which depends

on the energy of a particle outside the string and the flux of torsion inside the

string produced by its spin. This is analogous to the AB phase. There is another
topological phase which depends on the spin of the particle and the flux of corvature
inside the string, produced by its mass. This is the dual of the former phase. I shall

show that this pair of dual phases satisfy the duality principle formulated in section
2.

1. Topological and Geometrical Phases Due to the Electromagnetic Field

For simplicity, consider the non relativistic Hamiltonian of a charged particle
in an electromagnetic field

11= -(p - cA)2 + eA,, (1.1)
27n

where e and m are the charge and mass of the particle and Am = (AO, A,) = (Aa, -A')

is the electromagnetic potential representing the 11(1) connection due to this field*.

* Units in which the velocity of light C - I will 1! used thiroughout,
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As is well known, (1.1) predicts the Ahtaroenv- Bohm (AB) effect [1]. This is the
electromagnetic phase difference between two interfering coherent beams which are
entirely in a multiply connected region, in v' 1 ich the field strength F, is zero. The
phase factor that determines the electromagnetic shift in the interfering fringes is

IC = CXIT(- f'ý d Audx), (1.2)

where the closed curve C passes through the two interfering wave functions, and
encloses a region in which the field strength is non zero. Consequently, this phase
shift is constant as the beams are varied in the outside region in which the field
strength is zero, which makes this effect topological. Conversely, the experimental
observation of this phase shift may be used to infer that the electromagnetic field
is a U(i) gauge field 16,7].

Consider now the interaction of a neutral magnetic dipole, such as a neutron,
with the electromagnetic field which at low energies is described by the Hamiltonian
(2,3,8,9]

= ( 7A 5)• + 7"ASk, (1.3)

where A,5 = (A0 k, Ak) = (-Ilk, ci 1i) in terms of the electric field E and the magnetic
field B, S,,k - 1,2,3 are tile Spin components which generate the SU(2) spiin group.
For a Spin particle, the magnetic inoment p - . This interaction is like that of
an isosp;n with ain SU(2) Yang-Mills field j8,9,101.

The phase shift due to both electric and magnetic fields, in the interference
of a neutral dipole such as a neutron, was obtaine(l by means of all explicit phduxe
wave solution [2). This result, of course, aipiplies also to the more general situation
when the interfering wave fimnctiuns are locally approximate plahie waves so that
the WKlJ appi~roxinatioin is vwlid, Hence, the phase shift is determined by the non
abelian tiuiise factor l*i7 I'

'Dc 1 cxp-- 7 APeSxd.r"), (1.4)

where P dcot es path ordering, and C is a closed curve consisting of unperturbed
trajectory [8]. Hence, D( is an element of SU(2), and this phlse shift is like the
phase shift due to an 5'U(2) gauge field [5,6,111.

The special , isc when the two waves interfere around a line charge was
considered by AC [3]. In this case, Auk = 0 and the electric field Ej and therefore Ail =

ikE- fall off inversely as the distance frlom the line charge. It follows immediately
from (1.4) that, if the spin is polarizedl parallel to the line charge, then this phase
shift is topological ill the sense that it does not change when the curve C' surrounding
the line cLarge is deforlued. However, the Yang-Mills field strength 4, ot A,A is non
vanishing outside the line charge, which makes this effect fundamentally different
from the AB effect in which the electrunagnetic flied strength Fm, = 0 along the
beams. But if the line charge is in the 3-direction then I,':' = u. That is the field
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strength corresponding to the U(1) subgroup of the spin SU(2) generated by S3 is
zero. So, for this subgroup, this phase shift is like the AD effect.

Another topological phase shift experienced by the dipole is the following:
The wave packet of a neutron or an atom is split into two coherent wave packets,
one of which enters a cylindrical solenoid. The homogerneous magnetic field of the
solenoid is then turned on and is then turned off before the wave packet leaves the
solenoid. Then there is a phase shift even though there is no force acting on the
neutron. This phase shift, which is easily obtained from (1.4), is due to A,, = -Bk.

Hence, this phase shift is due to the scalar potential of the gauge field of the U(1)
subgroup of the spin SU(2) group generated by the component of S in the direction
of B. At the suggestion of Zeilinger [12] and the author [81 this experiment was
performed for neutrons [13].

The general case of the phase shifts for a particle that has charge and mag-
netic moment interacting with an electromagnetic field was studied before [8,9].
I shall restrict here, for simplicity, the special ease of the particle being a Dirac
electron with "g-factor" being two. Its Hamiltonian, at low energies in the inertial

frame of the laboratory, is

II = - (p - A- -y'A Sk)
2 

+ eA + -'A, Sk, (1.5)2on 2

This Hamiltonian is like aq if the electron is interacting with a SU(2) x t'(I) geuge
field represented by the gauge potentials Ak and A. Note, however, the factor I in
front of A' compared to (1.3). This is due to the Thomas precession undergone by

the electron when it accelerates in the electric field [2,9].

2. The Duality of AC and Its Generalization

The major new contribution of AC, which is not contained in any earlier
work, is the recognition that the phase shift due to the line charge is "dual" to the
AB effect due to a solenoid. I shall now give a precise statement of this duality
which would be general enough to apply to other interactions as well.

Suppose that an infinite uniform solenoid is situated along the z-axis of
a Cartesian coordinate system. A charge of strength e is taken slowly around
the solenoid along a circle in the nj-plane with its center at the solenoid, which
is assumed to have negligible cross-section. The solenoid may be regarded as a
magnetized medium with a constant magnetic moment per unit length etjuad to M,
say, which is parallel to the - axis. Th,' AB phase shift acquired by the charge

A•=T B d=--, (2.1)

where E is a cross-section of the solenoid, II is the magnetic field inside the solenoid,

and M = IMI.
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Now, divide the solenloid into slices each of height hif biounded by cross-
sections that are parallel to the zy-plaiie. The magnetic inoment of each slice is

/A = Wet. (2.2)

The linearity of Maxwell's, equations imply that the phiase shift is linear in thle sellse-
that (2.1) is the sumn of thef phluse shifts due to the influence of each slice of thle
solenoid onl the charge, Coisider a slice whose center is at z = Z. Then taking the
charge around thle circle mentioned above is equivalent to keeping the charge fixed at
x= -Z and taking tile slice of magnetic moment is = 1i~l around the samne circle in the

xy- plane. The phase ,ihifts acquired in both processes are! the samne. This has been
shown using space-time translation and Galilci invariance of the Lmigrangian, for
the special case of chaLrge-dipole interaction [3) and using Lorent ilvariauice for the

general case of a.n arbitrary interaction [191. Now dto this for each pairwise interaction
between the charge r ;ind each slice with mingmmetic momlent is. Then, a% we accouint
for 0l slices fromn z = 4,.o to -- 'ý -, in the new situation, which1 will be called tile
dual of the original situation, thiere are charges from z =~ to z =+00 along thle
2-a1xis, and the niagnetic miomnit is , irries around this line charge. Each charge ris
contained in anl interval of he~ighmt .tt, andm may he a~ssunued to be spread unmiformnly
in that ;nterval. Therefore,

r = Ahl,(2.3)

where A is thle charge jier unit le~ngth. It follows that the maugnetic Iimoniment whichl
circles arounud this line charge, with its direction parallel to thle z-axis, acquires at
phiase shift equal to AO given by (2.1). From (2.2) and (2.3),

ed
T= (2.1)

for these two duial situations. Using (2.2), (2.1) inny be rewritten as

hi(.~

This phase slhift nmay also b)e ini ~bpemidently derived uisim g (1 .4) amid tilie elecetric fte I (
of at line charge obutainedl by solving Maxwell's cqw-ttiommN.ý

Thme above argumenmmt may bie gen eralized to the ciL9e whmen the ch arge goes
around an arhit,,ary closed cuirve r(t) which muay or may not enclose thle solenoid.
Then relative to one of the above mientioned slices at -~ay Z = (0,0, z) this curve is
r(l) - Z. Therefore, ill thle duiid situation the slice with magnetic Iumoiment is mloves
around the closedl ctn~vc -r(t) + Z relative to thle charge. So, if thle charge is Placed
at - Z, thle slice goes amrounmd thle clo sedI ci rve - r(l). By doin g this for each Mpui rwise
interaction between thle charlge Imoo the fixed numignetic nummueicit of each 4f thle slices
into which the solenoid is divided, I obtain thle dual situation InI which1 at m1agnetic.

dipole of strength ji, amnd dhirectimon parallel to the! z-axis, muoves around the closed
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curve -r(t) with a line charge, whose charge per unit length is A•, along the Z-axis.
Also, since this interaction is invariant under parity, the same phase shift is obtained
for the situation obtained by parity transforming about the origin. This corresponds
to the magnetic moment moving around the original curve r(i) traveled by the charge
when in the presence of the solenoid.

Now the statement that the AB phase shift is topological may be expressed
as follows: If the curve r(t) goes around the solenoid n times, n = 0,1, ,2..,, then
the phase shift acquired by the charge going a.-ound this curve is nt,, independent
of the shape of this curve. (Topology has to do with integers. So, a topological
phase shift slould, strictly speaking, be expressed in terms of integers.) Then the
curve -r(t), which is the parity transform of the original curve, goes around the
line charge n times in the dual situation also. Therefore, the phase shift acquired
in the dual situation is nA4, independent of the shape of this curve. Hence, the
latter phase shift is also topological. This may also be seen from the fact that
the expressions (2.1) and (2.5) for tL:,.se phase shifts are independent of the shape
of the curve traveled by the particle. But notice that the argument above which
establishes the equality of phase shifts in the two situations that are dual to each
other does noa assume that the phase shift is topological. It is valid for the phase
shift due to any interaction, which may or may not be topological. Also, the above
duality can be generalized to the case of the charge moving around a closed curve C
and acquiring a phase in the field of :in arbitrary distribution of dipoles, each having
the same magnetic moment in both d ection and magnitude. A little thought, by
considering each pairwise interaction of the charge and each diuole, shows that in
the dual situation, in which the dipole moves along the parity transformed curve
with the charges in the parity transformed positions of the dipoles of the original
situation, the same phase is acquired by the dipole. Again using the invariance of

this interaction under parity, it is concluded that the same phase shift is obtained
when the dipole travels the original closed curve C with the charges iii the positions
of the dipoles in the original situation [9]. This argument may be generalized to an
arbitrary linear interaction, but the interaction needs to be invariant under parity
for the last step to be valid. The equality between the two phases in the two dual
situations will be called the duality principle.

This duality principle enables us to obtain from the known phase shift due
to a line sadrce a new phase shift. Alternatively, if both phase shifts are known
then this principle may be used heuristically to obtaini a new solution of the field
equations from the old solution that gave the old phase shift. For example, suppose
we know the magnetic field of a solenoid and the AB phase shift [1] of a charge
due to it, and the phase shift of a magnetic moment due to a general electric field
[2]. Then according to the duality principle, the phase sol . in n tie situation dual
to the AB effect in which a charge is interfering in the electric field E is due to a
line charge is the same and is given by (2.5). Then using the result for the phase
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shift of the magnetic moment due to B implied by (1.4), and the axial symmetry,

F, --j, where p is the distance from the line charge, p is a unit vector in the radial
direction and A is the charge per unit length. Thus E of a line charge is obtained
without solving Maxwell's equations. In the next section, I shall apply this general

argument to phase shifts produced by gravity.

3. Topological Phase Shifts in the Gravitational Field

It is well known that the mass and the spin angular momentum in a gravi-

tational field are, respectively, analogous to the charge and magnetic moment in an
electromagnetic field. Therefore the analog of the AB effect for gravity is the phase
shift AOe acquired by a mass going around a string that has angular momentum
(analog of the solenoid). The dual situation then is a spin going around a string or

a rod having mass only, and acquiring a phase A0. Then according to the general
argument in section 1, if the field equations are linear,

=(3.O)

The actual values of AOG and Ao' depends on the gravitational theory used

to compute them. I shall study these phase shifts in the following theories: A. New-
tonian gravity, B. linearized limit of Einstein's theory .f general relativity, and C,
The Einstein-Cartan-Sciama-Kibble (ECSK) theory of the gravitational field with
torsion [14I. In all three cases (3.1) will be shown to be satisfied. The differences

between these phase shifts provide a way of distinguishing, in principle, between
these theories, altl'ough in practice the predicted effects are too small for realistic
experimental tests at the present time.

A. Newtonian Gravity

In this case, only the mass, not the angular momentum, acts as the source

of gravity and is acted upon by gravity. Therefore, both A6e and A¢' are zero.
Hence, (3.1) is trivially satisfied.

B. Linearized General Relativity

Consider now the low energy weak field limit of general relativity. Write the
metric as 9= ?/,, Y 1 ,, where f,, << 1. In this subsection, all terms which arc

second order in -y,, will be neglected. On writing = - ,, the well

known linearized Einstein field equations are

tPB0 T,• = 8wGT,., (.(2)

in the gauge defined by 01y,, = 0. I neglect stresses so that we have

Ti = 0,T% = 0,i,j = 1,2,3. (3.3)

Consider now a particle with mass to and intrinsic spin S at low energies. In

the stationary situation, a coordinate system may be chosen so that -f., are time

IF
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independent. Then the acceleration due to gravity is g = V703 and the 'Coriolis'
vector potential is 70 = -(701,,702,r70), as can be secn easily from the geodesic equa-
tion. The 'gravi- magnetic field' H = V x yo = 2l, where 0l is the angular velocity of
the coordinate basis relative to the local inertial frc-nc. To couple the spin to the
gravitational field introduce the vierbein e". and its inverse e,':

-",= -• y,e,, =6,+ - (3.4)

which satisfy (3,20) and (3.22) below. The latin indices, which take values 0, 1,2,3

may now be lowered and raised using the Minkowski metric %b and its inverse q11.
It then follow hat the Ricci rotation coefficients w,4, e 4 V~e" are given by

Wp1= (u.7,,) (3.5)2

where ,a denotes partial dificrentiation with respect to z'.
The phase shift in interference due to the gravitational field may be obtained

in the present approximation by taking the low energy weak field limit of the phasc
shift obtained in reference 5. In particular, the phase shift due to spin alone ;;
obtained by parallel transporting the spin wave function by acting on it by "Ite
operator

bs = Peap P- >sa1 Sbed = Pap -I 7y,,S"ýdz"] , (3.6)

where the integral is along the unperturbed classical trajuctory with P denoting

path ordering, and Sb., which generate Lorentz transformations in spin space, are
related to the spin vctAor S1 and the 4- velocity v1 by

S-b = eCb"4 VSd, (3.7)

with all components being with respect to the vierbein. The subsidiary condition
S*v. = 0 is assumed here.

Rewrite (3.6) as

ab= P p / bS'b di - f pn,,S"'dx}]. (3.6')

The first integral in the exponent of (3.6') is

•-rosiSGdt + fI 7sSjdt = (g x S . v - t ,S)dl. (3.8)

The second integral of (3.6') is approximately

J ris.&SjkdXi = jg x S . dr. (3.9)
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Combining these results, (3.6) reads

D~s ecxP[-h2Jg xS dr j. nflSdj (3.10)

The precession represented by the last term of the exponent in (3.10) corresponds to
the interaction energy -U.-S = -I•S. iiin the Hamiltonian. This may be understood
from the fact that when we transform to a frame rotating with an angular velocity
n relative to the local inertial frame, the spin that is constant in the inertial frame
obviously rotates with angular velocity -a relative to the new frame [151. The ratio

-t of the magnetic moment to spin introduced in section 1 for the electromagnetic
interaction is, for a particle with charge e and mass is, y = L- where 9 is the

gyromagnetic ratio. For the gravitational field, the principle of equivalence implies
that the 'charge' density equals mass density. Therefore, g = I and e = va. Hence, "-
Sand the 'gravi- magnetic moment' ILC = iS, consistent with the above interaction
energy.

Equations (3.2) subject to (3.3) arc

9cTOjo = 8rGTo0 .

These are like Maxwell's equations in the Lorentz gauge, and may be solved in the

salne way. Consider the specific cose of an infinite uniform hollow cylindcr of radius
P, and mass per unit length p, rotating about its axis with angular momentum per
unit length J parallel to the axis of thie cylinder along the z-axis. This is aonLiOgous
to a rotating charged cylinder in electromagnetism. So, on defining r = (9, x, x

3 ),
p = (x,.2,,0), and p = p1P1, the 3ohtiouin exterior to the cylinder (p > ou) is obtained to
he

"You = '71i 722 = )= 4
G711ogp,0o9 -)70 x r = --- x, (3,11)

p p
where p is a unit vector in the direction of p. The solution in the interior to the

cylinder is
4G 40

ouU = 71n 7ý2 = 'Y33 t 4G1mlogpo,-7o 0 4G 3 x r 4C J x p. (3.12)

Suppose at first dihnt J = 0. Then, from (3.11), 11 ) 0 and g - Consider
the interference around the cylinder of a particle whose spin is polarized in the
X3-directiou with the axis of the cylinder lying along the X- axis. Then the phase
shift due to the coupling of spin to curvature [5,16j is obtained from (3.10) to be

Ag= - x S. dr = -8(3.1s.)

This phase shift is independent of C and is therefore topological.
Consider now the dual situation that is constructed as follows. Divide the

cylinder into small segments of length ht. The mass of each segment is In = jie.
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In performing the duality operation, each segment is replaced by a segment whose
spin is the same as S and the particle is replaced with another particle with mass

m. Then the cylinder has angular momentum per unit length J = s. Therefore,
so S- S = 7 (3.14)

So, in the dual situation, the mass rn is interfering around the cylinder with angular
momentum per unit length J, which is a gravitational analog of the AB experiment.
From (3.11), the phase shift due to J is the Sagnac phase shift [4]

0 - 7o • dr = -87r GnJ. (3.15)

It follows from (3.13), (3.14) and (3.15) that (3.1) is satisfied.
I shall now describe the gravitational analog to the topological phase shift

of the neutron due to the magnetic field described towards the end of section 1.
Suppose, in a neutron or atomic interference experiment each of the two interfering
beams passes along the axis of each of two identical very massive cylinders. One

of the cylinders rotates as the wave packet of each neutron enters the cylinder and
stops rotating before the neutron leaves the cylinder. Then from (3.12),

a£1 -V 4G 70r -- J. (.
2 TO

Suppose, for simplicity, that the spin of the neutron or atom is polarized along the

axis of the cylinder. The first integral in (3.10) would be the same for both beams.
Therefore, the phase shift between them is given by the second integral of (3.10)

due to the rotating cylinder to be
Aon = I R • Sdt = - 4-JS- (3.17)

on using (3.16), where r is the time spent by the neutron inside the hollow cylinder,
assuming that the time intervals during which the rotation of the cylinder is turned
on and off is negligible compared to 7. As in the electromagnetic caise, the phase
shift (3.17) is not accompanied by a force, apart from transient effects when the field
is turned on and off which occurs also for the AB effect due to the scalar potential
[11. Hence, (3.17) is a topological pliase shift.

It is interesting that A$s oh; tined here by parallel transport with respect
to the gravitational connection is analogous to how the electromagnetic phase shift
experienced by the dipole was obtained by parallel transport with respect to a corre-
sponding connection [8,9]. The three gravitational phase shifts obtained above uising

(3.10) and (3.15) are the low energy weak field limit of the phase shifts obtaiued
previously using Dirac's equation (5]. However, these phase factors correspond to

the tentative IHamiltonian

p-yoy - 2S x g)2 + 1 -s H, (3.18)
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in the sense that they may be derived from this Hamiltonian. This is a generalization
of the Hamiltonian found by DeWitt [17] to include spin. One way of confirming

(3.18) is to directly take the low energy weak field limit of Dirac's equation, which

will be studied in a future paper.

C. General Relativity with Torsion

The phase shift in general relativity may be obtained from the action on the

wave function of the gravitational phase factor [18]

= Pexp[-iJ(f. P. + w"4Mb0 dM,(.9

where C goes through the i fering beams. Here, 1, and M'.,a,b = 01,2,3 are

the translation and Lorcntz t ;formation generators which generate tile Poincare

group that acts on the Hilbert. :;pace. Then e%,4 and w,"0 have the interpretation of
the gauge potentials of a Poincare gauge field. In am interferomnctry experiment, the

two beams need to be brought together by means of mirrors which gives rise to the
Thomas precession [191, which will bc treated elsewhere [20].

It was shown by means of the WKB approximation of Dirac's e(quation that
(3.19) determines the gravitational phlase [5,18]. This may also be realized for a
particle with arbitrary spin as follows: The Lorentz part of (3.19) ensures that the

wave packet is parallel transported infinitesimally, while it acquires a phase, which is
a good approximation for the locally approximate plane wave being considered here.

To find the phase acquired due to energy momentum, note first that e, depends on
the observer. A Lorcntz tM rmsformatiomn of the observer resalts in eC' transforming

as a contravariant vector ii the index ( while P. transforms as a covariant vector.

Suppose that a particle is in a state 10 > that is approximately an cigeustate of P.
with cigenvalucs p.. The fact that the gravitational phase is observable along an

open curve implies that the "wave vector" p,: _-Sp, is observable [21,22]. Requiring
that the correspondence between Pp and p. is (I - 1) implies that 1,

0 is a non singular
matrix. Therefore, it has an inverse cl:

C"C' = 66. (3.20)

Hence, p,, c" dPI. The Casimir operator 7fe po ib of tie Poincare grouip) has a definite
value, say ,a2, for the given particle. Therefore,

,I pPb - p w nI , (3,21)

N ere g"I - Y'becae 6b is a non singular matrir. Its inverse yv defines a pseudo-
,nannian metric of Lorentzian signature on space-time. On using (3.20),

u - t!e " 6. (3.22)



210

Thus the definitenes: of the mass (which may be zero) ensures the definiteness of the
phase that depends ,an e* even for open curves. In this way the space-time metric
is deduced from the gravitational phase corresponding to the translational part of
(3.19) which is observable along an open curve. Conversely, the metric determines

the latter phase to be observable along an open curve.
The field strength or curvature of this Poincare gauge field is obtained by

evaluating (3.19) for an infinitesimal closed curve C:

2i + 2.t"6,',M)dO'" (3.23)

using the Poincare Lie algebra, where

Q` - dc' +-w'b Ae' (3.24)

is the torsion and
R1% - dw' + w", AwC& (3.25)

is the linear curvature.
Comparison of (3.19) with (1.2) and (1.4), and (3.23) suggest that there

may be topological phase shifts due to interference of coherent beams that enclose

a region that contains curvature and torsion, but which are zero along tile beams,
Such an example is provided by the cosmic string whose metric exterior to the string

is given cylindrical coordinates as [23, 24, 25].

(is', (,i I /1 iq)
2 

- dpa
2  v'p'dO'd - dz,(3.26)

where a and p constants. rhren the metric y,, satisfies (3.22) for the following

orthonornial co-frame field (c{" adatpted to the above coordinate system:

c' = (t -- fld, c 1 - dp,ec = cvpd#,c4 = dz. (3.27)

The connection coefficients ill this basis are w,,"b_ 0, for all a., p except

for

woi2 (34: 0d .28))

it follows, on using (3.24) and (3.25), that Q' = 0, Rf" - 0 outside the string. The
scattering cross section of particl's with definite energy in the above geometry has

been obtained before [26].

In the appendix it. is shown that this solution aniy be extended to an interior

solution that has uniform energy and spill densities and which generate curvature
and torsion according to the ECSK equations [14]. The ')nstants a and [I are then

determined by matching the interior and exterior solutions to be

I= - 4Gp,fl = 4J, (3.29)
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where y is the mass per unit length and j is the angular momentum per unit length
clae to the intrinsic spin density inside the string.

If C is a closed curve around the cosmic string then from (3.19),
3

Dc=expi~ ( J c~.oPodxP) P' cxri -ifJ (± F- e" k,+ W2,M1) dzsj (3.30)(- Ckl I' I • 2 i

using the fact that ep'Po commutes with the other terms that occur in (3.30).The
first exponential is a time translation second is a spatial Euclidean transformation.
Hence, if (3.23) is valid, then the time translation would correspond to torsion being

non zero inside the string. Suppose that the surface of the string is given by p = p,
where po is a small constant. Then; substituting (3.27), (3.28) into (3.30), and using

(3.23), the flux of torsion through a cross-section S of the string is

j; Q5 = 27r0,J'Z2 = 27r(1 - a) (3.31)

This is independent of the particular geometry inside the string so long as U is
"infinitesimal" so that (3.23) is valid. In particular, (3.31) is easily verified for th,

solution in the appendix, independently of the value of p-, using (A.12), (A.15) and
(A.16).

For simplicity, consider a circular interferometer with constant radius r > ps
in a plane normal to the string, with its center on the axis of the string. It may
be a superconducting interferometer, e. g. a superconducting ring interrupted by

a J(, -phson junction. Or it may be an electron interferometer, or a wave guide,
such as an optical fiber, at one point of which is the beamn splitter that splits a
beam into two which travel in opposite senses and interfere at a mirror that is at
another point in the interferometer. The interferometer does not rotate relative to
the distant stars, which may be ensured by requiring that telescopes rigidly attached
to this interferoroeter are focused on the distant stars.

The phase shift may be obtained using (3.30) with C along integral curves

of p1 which lie on a 2 dimensional suhinanifold a with constant z and p = r. Hence,

C may be chosen to be along a circle around a with constanit t. Suppose E is the
energy of the wave function which is assumed to be constant in time at the beam

splitter. Then it is constant everywhere along the beams. Therefore, in this WKB
approximation, the magnitude of the momentum p - (E' - rn2)/2 is also a constant
along thme beanu. By taking into account the Fermi-Walker transport of vectors

associated with 1' >, A 2
1 in (3.30) may be replaced by the spin operator S21 in the

present coordinate basis [10]. The spin is assumed to be polarized in time z-direction,
i. e. 40 > is an eigenwector of S11 with cigenvalue S/h.

Now, the three operators in (3.30) conmnmute with one another and their
actions on 14 > give rise to the following topological phase shifts: (i) The general

relativistic Sagnae phase shift [4] is obtained froim the. first factor to be

AOE - d.•J ,Q dp Ade = -8A7'J, (3.32)

___....J
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where E is a 2-surface spanned by C. (ii) The phase shift due to the coupling of

spin to curvature [5] which is obtained by the second factor in (3.30)*

taS f2T,) 2R - r-8-,' (3.33p)

The phase shifts (3.32) and (3.33) are expressed as flux integrals of torsion
and curvature because they could have also been obtained from (3.19) which de-

pends only on the affine connection. (The torsion and curvature fluxes contained
in (3.32) and (3.33) are the same as (3.31) which is independent of the particular
geometry interior to the string onsidcred here.) It follows that these phase shifts are
independent of tl,c shape of the interferometer enclosing the string and therefore

may be called topological.
I shall now show that the above topological effects satisfy the principle of

duality formulated in section 2. Consider first the Sagnic effect ots a particle widh

energy E due to the spinning string with angular momentum per unit length .1.
This is like the AB effect due to a solenoid. Divide the string into small segments of
length 6f. The spin of each seginent is ;- J6t. In performing the duality operation,
each segment is replaced by a segment whose mass is the same as E and the particle
is replaced with another particle with spin S. Then the solenoid hla been replaced
by a rod with mass per unit length it - ±-. Therefore,

E S
/- = . (i.34)

Conversely, if (3.34) is valid then thi two situations ,may be obtained from eacl
other by performing the duality operation. Hence, by the duality principle, the

plhase shifts for the two situations should lie equal. Indeed, the phase shifts (3.32)
and (3.33) which were derived without paying any attention to the duality lirimiciple

arc equal if and only if (3,34) is valid.
This illustrates also again how the duality principle may he used to obtain

the pha~se shift for the dual situation: Fron (3.32), we may obtain (3.33), or vice
ve.rsa, on using (3.34). Even though the genend relativistic equations are in general

non linear, the equations that are solved ill the appendix to ohtain the exact solution
are all linear, so that there must be duality in the present cmse according to the
general arguments oif stection 2. If this duality is assumed then a new gravitational

solution may lie obtained froin an old solution both in the Iresentt case amd in the
low energy weak field case considered earlier, similar to how this was done in the

* The phase shifts (3.32) and (3.33) may bc evaluated using the line integral outside the string using

(A.1i) or the surface integral inside tih string using (A.11). In (3.33), 27" has been subtracted from thim

line integral to remove the purely coordiiitte elffet du(1 to the rotation of C2 by 2w am one goes around C,

consistent with the Uanuss-Blonmct theor(m.
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electromagretic case at the end of section 2.

4. Concluding Remarks

As already mentioned, the AB effect shows that the field strength is insuf-
ficient to describe the electromagnetic field, whereas the phase factor (1.2), which
is called a holonoiny transformation because it parallel transports around a closed
curve, adequately describes the field. More generally, for ani arbitrary gauge field,
the holonomy tran:formotions arc of the form (1.4), with A,' now being the corre-

sponding vector potential. The fact that. these are sufficient to determine the field
uniquely is shown by the following theorem [27): Given the hoeinosny transfornia-
tions (2) for piece-wise differentiable curves which begin and end at a given point

in space-time, the gauge potenltial A,,' may be reconstructed, aid it is then umique

up to galge transformations.

But since the set of such curves foriti an infinite dimensioali manifold L, the
corresponding operators (2) have a great deal of redmidani:y. Indeed, the gauge field
in spacec-time may hc reconstructed from a muinimal set of these, operators defined oni
a four dimenlsional subminifold of L [7]. This i: imuathicenitically Ceuivalent to work-
ing with the gauge potential lefiut-i iin a part iciuar gauge oi the four diiiiensional

sjiiCe time. Therefore, once the rediindamicy in the loo np space L has beeni removed,
there is no advantage to using dxc tholotuoxty transformation (2) aLs oppo.sed to the
gauge potential in a particudar gauge.

It follows that in ujutait izing the electromitgni, ic or more general gaiige fihlels,
One m.1uuSt (ulaxtize the gaulge potuoxtiol instead of the field strength. Slixilarly, the

topological effects du(e to the' gurvitat-iodi hi'ldt described alumv, sluggest that ill
(uiaiitizing the gravitot160th: fiehl, it is thel" 'gt luge inteixti;dLsL' V,," ia1l MP. which
should be ou1t1mtized, atd thI ix ,triic (3.22) is obraineti from thexic as a mcconda'ry

Vnu'iLt)lc [26,22], However, thh c•e is a breaking of guige symmetry which lx udos 11,"

a tensor field instetol tff aL comtectioi L221. This is like how in a sxpircxi liutor the
U(1) gauge symimetry is s111ittmcously irokix, which makes A, a cuvarimit vector
field instead of a c•mnection,

So, it may well le thamt ill the early muiverse there wis tihe full Poincare gmougv

symmetry with r1 " amd MA1 ,, having vtoMun CxlictUitioii Widuic zero in t1 approlpriate
gauge. As a result of spontaneous symnxctry breakimig of tih translational part (f

the Poihware group, ',, ' may lave acquuired aL vacisuon expectation vahmic equal to
b,' corresponding to the Minkowwski geometry. But I emohphasize thttt these are

speculative remarks, mi1d nttI ju.stification by a detailed theory.
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Appendix: Spinning Torsion String

The simplest gravitational field equations in the presence of torsion are the
Einstein-Cart ,ljiama- Kibble (ECSK) equations [141, which may be written in
the form [291

-ijjklOi A U'5  
zx (A.1)

2

lijjiO' A Q= 87rGsij, (A.2)

where ii and 8j a,,' 3-form fields representing the encrgy-niolxnttun and spin den-
sities. I shall no% .btain an exact solution of these equations for the interior of
the cosmic string which mnutehes the exterior solution (3.26). This will then give
physical and geometrical meaning to the parameters a and $ in (3.26). This solution
will he different from earlier torsion string solutions 131] that have static interior
metrics matched with exterior metrics which are different from (3.20).

The p and ± coordlinates in the inte'ior will be c-hosenx to be the; distaiUcICs
measured by the nmtric in these directions. Since the exterior soltituon has synune-
tries in the t, 0, and z directions, it is rcasonable to suplosc the sauni for the interior
solution. So, all f inct ions in the iiittrioi will be flirtions of p only. liA(Iptirillg also
simplicity, I ma1tke the following tliistz iln the interior:

0
' = u(p)d(1 + u(i)(10, i t1p, (0 2 f(p)d, 0' = dz,w' I - k(p)dO = -wt'2, (A 3)

all other c olipnlivits of W" 1,ii ig z(ect , ttld &N,2 
U: tj,)Ob g- g,,,dtx'.it Sutilose

also that the elrgydei density ienul spin cit'usity U, IpIo lrizetl in the i-dilre'tii n, an'-
constant ;nti( ctrrespionid to ;a 'lssii'il litiil it relst. 1, c.

I= A 0' A UA' - , f(p)dp A c/4 A dz,

sI2u -- -q -2 1  all0 A 0' A (0 --' af(p)4p A do4 A d/z, (A.A)

the othr Icoll e oltp nteSi" i sj i 1iing, ztnro. Ill tic.llts of the coitpoutu ts of the energy-
mnomentuIii and sItill tensi rs in the priesi't basis, this iia 110s that t"', 

5  
-- COniStanlt

alnd s'1 = a ifilStLtllt.

It is assl'(d thlt thtre is oi s;lufavce ellegy-lltilul'tnlill or spil for the string.

Then the metric mtilst satisfy the junction contlit ions [301, which in thi prestnit case
are

I,-,, i I= ±a,•+ di u,,I+ I ,, • - 2 It ,, h, (A 5,)

where K,3= (-Q,,i, -4 Qp, - q(-,.) is the contorsitl or the defect tinstor, and
- refer to te li Iiitiing volits itt• la Olt oundacy of tihei str-ing is aplroac-t'd from
outsidei and iusidtc the string,, rcsjictivily, ;utl tIe hat dtitites the torreslicdilng
coordiniate coulpoilent.
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Substitute (A.3), (A.4) into the i -Cartoan equations (A.2). Tl. (ij) = (0,2),
(0,3),(2,3) eqs. are mtotnathially sitisfied. The (ij) = (0,1),(1,3),(1,2) eqs. yielld

P'(p) - H) - 0, ,'(0) -- 0, r/(p) = SnrGaf(p), (A.G)

where the prime dr'notes differeirtiaition with respect to p. Therefore, the continuity
of the metric (eq. (A.5)) imnplies thit, since i, = I at the boundary, v(p, - I every-

where. Now substitute (A.3), (A.4) into the Einrtcin equations (A.1). The i = 0 eq.
yieds

V'(p) = -7wGrf(p). (A.7)

The i 1,2,3 equations yield, respectively
k'

/, =, t. = O.t = -- '• t A dp A d = 0-'o A0' A02 , (1.8)

using (A.7). IHence, I' to'(,. From (A,.) and (A.7),

f" (/') F ý•.fp I -[)

where p* (8 ;•)-I/ In ordi F foi t tr tl'rei nut to be a itriir:cal ('coiie" sirngularirity

at p 0, it is iecctssary tHIM, P i t j p,lb ie;Lr p = 0. IHence, the solutirn of (A.9) is
f(p) = in . Then from (A.6(), k(p) ... os. r, mrn requiring v(0) = 0 to avito1 t eotuital

singuiarity, v,(p) = 8,Cap;", * I (i it). Phi.s gives the mi.tric iin the inte.rior of the

string to ibe

fi It In ~- tij-,j I ms ) 
2  

_ I -1 p *2 Sill. 1 , - t:11, (A. 10)

The rtrly iii i vaiiishini g eopnnrt jit 'ttx of ciii va tt re rund trorsiron are

I iqapy nitw tlet juntiorn lirs ( A .5), vliwhich will show that p is dis-
contiiinuouis across tIre Itiouinlday. Denioti th' valries of p for the bioundary ill thc
iLterual arid ext,t'crttl 'ottriliilt[t' systolits hy p ; pLit t'p+ rvsp'ctivcly. L.Froni (3.22)
tllt (A.10), g,ý :ru1d . Mi restrtucl.ivtIy ctltitottrtiis iff

Xfl p ( - t,,siL i) , (At.I',)
.8n ;a)) .2 (Al12)

pi,

TI 'ii cnuin htiri11g 111t't.riic ct tt'llc 'i ttc ; i 'h- I I II i lr y roIt iItt1rrIIs. ThIn orIy tIt1 zero ct' o IILti-

siun terms which cnit.t' intio (A.5) mre bt;llihiid frtoi (A.11) to be

/ , - "s .
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Using (A.13) and(A.14), it can now be verified that the remaining junction condi-

tions (A.5) are satisfied provided a = cosE-. The mass per unit length is

-- Ol A0•=• --Cos J Rl2' (A.15)

where E is a cross-section of the string (constant t,z). Therefore, a = 1 - 4G/. The

angular momentum per unit length due to the spin density is

J o10' A0 0 = 21rop *2 (1 coS &) = SJ fQO. (A.16)

Hence, from (A.12), 0 = 4GJ. The Sagnac phase shift obtained curlier is therefore

A0 = BT, where T is the flux of Q0 through E. In the special case when torsion is
absent, which in the ECSK theory means that spin density is zero, f0 = 0, and the

above solution reduces to the exact static solution of Einstein's theory found by
Gott [32] and others [33], whose linearized limit was previously found by Vilcinkin

[34]. After this work w:' completed I learned that Tod [35] has studied torsion
singularities using fline ' holonomy and the ECSK equations analogous to the present

approach.

Note added in proufs: The phase shift due to spin in the interference around a rod and
a cosmic string lis also been studied by B. Reznik (PhD thesis, Tel Aviv Univ.,

1994, amid prepriot to I' ) 1Iiblishl'dl in Phlys. Rev. D), by using the contribution to
the Lagrangian due to the gravitatiomal interaetion energy U = ' fTOC y 5,,d:x. This
amounts to treating ,ravity as at spin 2 field, compared to the piresent geometric

approach which begins with thc full general relativistic theory. However, the above
mentioned paper assUines that ,'1', in the rest frmne of the particle is the curl of

spin drnsity, which is then boos0ted to the 1bWoratory frame. This assumption cor-
responds to setting the 'gravi- miagiwtic moment' pu equal to the spin. This differs

from the result in section 3 of the present paper that Be(, is half the spin in accor-
dance with the principle of equivalence. The latter result implies that 7'"' in the
rest frame is half the curl of spiml density. Then, integrating by parts, it is easy to
show that the Lagrangian for a particle with mass TI], velocity v and spin S in the

laboratory framne is

L =E IMV - U MV 2I2 -+ mv, -r + 2v .S x g + S-s
2 2 22

This confirms the Hauniltoniau (3.18) (If the present plq)er. klso, the present paper

studies ao additional spimi imiteraction represented hy the last term of (3.18). Amid
this gives rise to the new topological phiiice shift (3.17).
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Abstract

Many quantum and classical fields are known to be influenced by disorder.
Anderson tiansition of the Schrodinger field is a remarkable example of such a disorder
effect. In this article we will discuss the cffects of disorder on gravitation. The general
relativistic (GR) gravitational field is a specially important case; because, this problem
has not yet received much attention and disorder has to be introduced in v' frame
independent geometric manner. Furthermore, the GR equations are nou-linear. Since
gravity itself acts as a source of gravity, non-linear self-coupling is expected to cause the
gravitational field to be more sensitive to disorder, Hence, any effects due to a random
.source distribution will amplify or "pile up" and encourage localization.

In this vaper, we propose a simple model of a gravitating system with random
disorder. Di! ,der is introduced through a stochastic generating function. The affine
parameter, t, for the out going null geodesics is calculated and observed to lengthen with
the increase in disorder. We interpret this as a slowing down in the propagation of
gravitational field and (as in the cases of other disordered fields) due to localization. We
argue that localization must have been important in the early universe; when, due to
thermal and quantum fluctuations, space time was very strongly disordered. In such a GR-
localized era the cosmological scale factor, S(t), will be diffusive and slow. Our
calculations show, in general, S - t1 /Y where -y> 2. This random walk-like field
propagation will effect'ively increase the value of the Newtonian constant G that can
render the gravitational interaction to be strong enough to produce the nucleation sites for
primordial matter. We reason, such random condensation could have Ueen responsible for
the observed inhomogeneity of the matter distribution in the present day universe.

1. Introduction

A system is said to be ordered when it has some symmetry; random breaking of

symmetry causes the system to be disordered. Many new phenomena are known to result
from disorder. The problem of random trnsitional symmetry breaking in a one

dimensional phonon field was first reported by Dyson 1 . About a decade later Anderson
considered a disordered electronic system 2 ,3. Since that time, particularly after Anderson,
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many researchers have considered the case of disorder in both classical and quantum
fields4-7.

In this article we will consider the general behavior of all types of disorder induced
localization phenomena with the goal to understand the peculiarities of the gravitational field
localization. In particular, in the following sections we will briefly review the classic work
by Anderson on the localization of electron waves. Later, the physical process of back and
multiple scatterings in a strongly disordered system will be described. Finally the results
from our model for gravitation with random disorder and the dynamics of a "GR-localized"
universe will be discussed.

2. The Anderson Problem

Anderson studied the non-relativistic Schrodinger field of an electron in a random
potential (disordered crystal) lattice. He reasoned that, in the absence of perfect
translational symmetry the electronic eigenstates would not follow the Block-theorem.
Hence, the wave vector k would cease to be a good quantum number and the wave
function (D would not belong to a unique wave vector. Further, for strong enough
disorder the wave may be localized in space. Anderson determined that the envelope of
such a localized state is peaked about its localization center and decreases rapidly away
from that poirt. The probability of finding a localized electron rapidly approaches zero, as
a function o& the distance from its center.

Quantitatively, the problem consisted of two parts: the introduction of disorder in a
mathematically tractable fashion while retaining the essential physics and the definition of
a calculable parameter that measured the effect of disorder on the field. The first part was
answered by modeling the unperturbed medium as a perfectly spaced lattice of uniform
square well potential field V(x) of depth equal to V0 . On this lattice, a random potential
W(x) was superposed. The width of the random distribution was W, as shown in Fig. Ia.
For the second part Anderson proposed using the value of D(W,R), the quantum diffusion
coefficiei,'. D(W,R) is a measure of localization; that is, the absence of diffusion to an
infinitely distant point is the criterion of complete localization. He showed, for sufficiently
strong disorder, i.e., W/Vo bigger than a critical value A*, (the exact valut ,f A* being
geometry and model dependent) D(W,R) -> 0 as R -+ o.

This is behavior is known as the Anderson transition. At this transition, an
electronic system undergoes a rapid change from some states localized to all states
localized. This is a cooperative effect brought about by the coherent interference from all
parts of the system. in practice, iterference •m. thc local region. is dominant; that is,
constructive scatterings from the local sites are conducive to extended states. On the other
hand, locally destructive interference or back-scatterings cause localization. 4 In the
Anderson phase, disorder is strong and electron transport is absent. Figure lb shows the
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extended, non-Block type electronic wave functions and Fig. Ic shows a localized wave
function.

Energy

Eo-W2 13 ,- -3 n Q- " Envelope of

(a) (b)

Envelope of

(c)

Figure 1. (a) Periodic Potential Eo with applied random potential W.
(b) Non-Block type extended clectron wave function.
(c) Localized wave,

Note that, because of coulomb attraction between the electron and the positive ion
cores, the electron is trivially expected to be attached (localized) to the lattice points. The
first unexpected quantum mechanical result was that, despite the scatterings from the zero-
point vibrations of the lattice, the electronic states are extended. Furthermore, this
behavior h independent of the value of the lattice constant. In the early years of the
twentie*h century, the effects of scattering due to zero-point vibration was a much
,r' 'ted question. The pur:nuit for evidence of zero-point scattering was a motiatior for

n,,ity ' fay diffraction experiments in crystals and low temperature resistance studies in
I ,e r-tals As lower and lower temperatures were achieved the research on resistance
r-, s-Idy led to the unexpected and startling discovery of superconductivity.

Tht question of lattice spacing was answered much later by Mott. Starting with the
, ": state of extended wave eigenfunctions, Mott showed that as the lattice constant is

t, :ased the electron will mninimize its energy by forming a bound state with a positive
core. This will collapse the wave function into a hydrogenic orbital and result in a metal-
insulator transition. Confinement costs kinetic energy but in the low density (large lattice
spacing) limit, potential energy becomes the determining factor for the ground state
configuration.

Another related transition was discussed by Wigner. The Wigner crystallization
(localization) lso takes place in the low density limit but does not require a lattice. This
behavior is possible event in a uniform positive background Of a "jellium" and is also
primarily due to the coulomb correlation. There is some influence of exchange or Pauli-
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principal which tends to keep the electrons away from each other. Although, all three
transitions relate to the change from bound to extended states, in the Mott and Wigner
cases the underlying cause is the (classical) coulomb interaction. The rem., rkable aspect of
the Anderson phenomenon is that it is due to (the translation) symmetry breaking.

The understanding of the electronic properties of disordered systems have resulted
in many advances. 4-6 In the last ten years or so, these considerations have been extended
to many quantum and non-quantum fields. For instance, localization has also been
reported for the classical Maxwell ýEM) field. 7

It has been observed that, in suitably prepared disordered dielectric media and over
some restricted frequency range, electromagnetic radiation can be localized, For such a
medium, many transport properties such as microwave propagation has been shown to
become slow and diffusive.7 However, the localization criterion for vector waves such as
the EM field is dependent on the details of the particular situation, Another reason for the
difference between the electrons and photons is that the electron can be bound to a lattice
site; however, the dielectric function of a medium has to be positive and real at all points,
so a photon cannot form a locally bound state. In this context, because, of the universal
attractive nature of gravitation, the GR problem is at the opposite limit from the photon
case.

3. Physical Description of Localization

Even in a uniform material medium light propagates with a speed less than its
speed in vacuum. So what is so special about localization'! To make the distinction clear let
us discuss the EM problem in some details.

Any medium has a substructure which makes it different from vacuum. This
structure may be due to atotns or "grains" which affect (scatter) the incident field. In a
"weak" medium the density (p) of these grains is small From one scatterer to the next the
field propagates almost freely with a speed equal to c, just as in vacuum. Ilowever, by
Huygens principal all the fields produced by all the scatters superposes and gives rise to a
net field F(R,t). In absence of absorption the amplitude of F at position R remains the
same as it would be in vacuum but F(R,t) acquires a change of pho:ac, 80, proportional to
the displacement R. This 60 is in addi~ion to the phase increase due to the "distance effect"
contribution in vacuum. 8 Hence, the effective wavelength ,;, (the distailce the field would
require to travel for the total phase to undergo a full cycle or AO = 27t) is shorter in the
medium than ko, the wave leng.ti in vacuum.

CClearly, there are sevcrai lcngth scal, s of the mediu,.. In the weakly intera,.ting
limit only three are important: R(t), the radius of the wave front (spherical in an assumed
isotropic medium); the mean free poth f; and A.. In this limit, R >> f >> X. For scales
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much larger than X and i the medium may be treated as a continuum and the net effect is
described by the refractive index n; where n = XA. The wave propagates uniformly at a
constant rate. In a time dt, the displacement, dR, is given by the linear relation:

dR =e* xdt [3.11

where, c* = v v = c/n, v is the frequency, and c* < c. This is the description of slow
but constant rate of propagation in a uniform medium.

To understand localization, the coarse graining of the effective medium model
described above needs to be relaxed. The problem has to be treated with a finer mesh by
including two additional lengths, < r "- and 4. The average intergrain distance, < r > -

(P l/d) where d is the Euclidean space-dimensien and p is the density. The grains form
clusters in the medium. The correlation length, ý, is a measure of the typical cluster size,
Also, t represents the scale length of disorder in the medium. At points separated by
distances larger than ý the medium is uncorrelated. The length i is inverwly dependent on
the scattering cross section (Z) and p. Hence, it represents the scale of interaction
between the field aid the medium. In the uniform effective medium limit described above
< r > and ý do not play any role because , ý<< < r > << .

Disorder effects are strongest and localization is possible if 4, X and f are all of the
same order but X - t < ,. With locaiization, the nature of wave propagation is
qualitatively different! In this case f is small and the field propagates in a random walk.
Under this condition, the net distance traversed by the wave per unit time becomes
progressively slow. Propagation slows down as the wave moves away from the source.
In other words, the term "speed or rate of propagation" becomes ill-defined as dR
becomes a sublinear function of dt, i.e.,

di - c*(dt,dR) x dt. 13.21

The "speed" or the factor c* decreases with R; because, in each region of radius R, there
are N - p x (Rd) scatterers and the number of scattering increases with R. A large number
of these scatterings are strong enough to send the wave back into a region already
traversed. Many back and forth, zigzag, random walk like steps are required to make a net
forward displacement of the wavefront. Under completcr localization, even after an
inf.nitely long time the wave fails to airive at infinity.

4. The Gravitational Problem

One may ask, why is the disorder problem of any interest in gravitation? There are
two reasons: first, gravitation is one of the most pervasive interactions in nature and is
known to have wavelike solutions, so it is reasonable to investigate gravitational
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localization. Second, at some early epoch in the history of the big bang universe the
quantum and thermal fluctuations of space-time, radiation, matter distribution must have
been highly non-uniform and randomly disordered. Such conditions could have produced
localization of these fields. The consequence of such a possibility may need to be included
in the proper description of the early universe.

The question we pose, is what happens to the gravitational field for a random
distribution of energy and matter? The formulation of this disorder problem in gravitation
is rather subtlr. Some of the difficulties arise from the tensor chai acter of the gravity field.
Further, the requirements of the principle of equivalence or the symmetry under coordinate
transformations also need to be met. Namely, matter at any position influences the
geometry at that position; however, the apparent geometry can be transformed away
(along a line) by a suitable choice of a free-fall coordinate system. Hence in GR the
problem of random distribution of sources has to be posed in a frame independent
manner.

Notice, even though over a small region, (-1/g, where g is the determinant of the
metric) the effect of any one of the geometric patches can be gauged or transformed away,
the global effect of all these contributions is non-zero. This is a key relationship among all
non-local phenomena and give rise to Aharonov- Bohm type effects.

5. A Model For Random Gravity

As an example of a disordered gravitational problem, wc consider a random
perturbation imposed upon the general relativistic background of a stationary, axially
symmetric, line mass. This choice of a highly symmetric model is motivated by analytic
considerations and computational ease but is not essential for this discussion.

We investigate the effects of disorder by means of a "generating function", A(r,t).
This statistical function A(r,t) will introduce disorder through grr component of the metric
tensor ard hence into the equations of motion.9-1 Because, in the absence of disorder the
stress-tensor vanishes (except on the axis), in presence of disorder we will require this
condition to remain true on the average. That is <stress-tensor> = 0, where < > denotes
the ensemble average over all the replicas of the distribution.

We consider null-radial outgoing geodesics. We thus start with a metric given by

ds2 = [I + A(r,'t)] r' (2,n2 + 2nm) (dr ,)2

+ r' (2 4 
2m) d0 2 + r- 2 m dz 2 _ r' ( 2m2 + 2m) (dO 2 [5. 1 al

wlheie i Is the radial udstantc, l'Oiin the aXiS, i is tin itinic cuordiliaje, 0 is thI ani|uibi
angle, z is the axis coordinate, and m is related to the mass parameter (mass per unit length
as measured at infinity). We assume that the generating function, A(r,'t), depends only
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upon r and t and that it is differentiable in these variables. A is partitioned into a non-
stochastic and a stochastic part, as follows: I li

A(r' ,t) = A0 + a(r' ,1) [5. 1 bi

The average of A is positive and is represented by AO. The stochastic part is a(r' ,r)
which is a random function with negative and positive values but of zero mean. The
absolute value of a(r',t) is assumed to be smaller than that of A0 .With this stipulation, the
matter or source is held positive everywhere although it has a random perturbation above
and below its average. Alternatively, we may argue that the mass of the source only makes
sense at infinity and as long as the integral of a is less that 1, there is no problem of
negative mass.

For any given A(r',t) the terms 1+AO can be rescaled to unity with the new radial
distance given by r . In terms of the new resealed coordinates, r and t, Eq. Ia can be
expressed as

ds 2 = [I + a(r,t)I r (2m 2 + 21n) (dr )2

+ r (2 + 21n) df2 + r--2rn dz 2 - r (2m2 4 2ni) (dt) 2 [5. lei

In the rest of this paper only these rcscaled space time variables r and t will be
utilized. For any particular realization, the mixed Einstein tensors are:

l a .~(--2m 2 -2ai-.l),Gt

G O, Grt = at x 1) 1C a,r r(- N -2n2-1)=l 12 m2

G22 la,tt - a,t + yaIrI x r( - 2im2 - 21n), and

G 33 = m a,r+ .I-a,r + Ia,tt r -- Ir a,t2 + Ia,r m l r( --2 1n2 _2m - l1).
' 22  2 22 1

For this geometry, these are also the "physical components" of the stress tensor. The null-
radial geodesics vre given by

d~t + 2(m2 +m)  +<(ar + at)> = 0, 15.2!

where T is an affine parameter.

The ensemble averaging of Eq. 2, is chosen independent of r and t such that

<Grt> = <Gtt> = 0.

We can also make <( 2
2> <G33> 0, provided the generating function satisfies

______
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-at = (a,02- -a,r. [5.31

Eq. 5.3 is the choice for the outgoing geodesics. Under these conditions we can
choose the ensemble such that <a,r + a, > = a is a positive constant for r< rcritical.
For r>rcriticaI we take the ensemble average to rapidly approach zero.

6. Localization Parameter for Gravitation

To calculate the effects of disorder a suitable "test" , araineter has to be defined. In
the electronic problem discussed earlier, Anderson chose the diffusion coefficient as the
measure of localization. In the GR-problem, we propose the value ot the affine parameter t
along out-going null geodesics to be the fiduciary quantity. The ratio of 't between two
events with disorder and the r for the same two events in absence of disorder is close to
unity for no localization. This ratio is larger than one for weak localization and will diverge
for strong localization. Similarly we use the differences A(t) = ['t(cx)-T(oc=O)j and
I A(0)/',(0=)] as measures of localization. A(r) is small for extended (non-localized) states
and large for the localized states.

The null geodesics, which include both light and gravity waves in this
approximation, are given by

d2r + 2 (m2+n)dJr 2+ 0. [6,11
___r r C Idr)

The form of the solution to Ekq. 4 depends upon the size of (x as compared to r. We can
best examine this by first considering the case of ox = 0. In that case there is no disorder
and

r =- -- +c2 [6.21
p X c i

where p = 1 + 2(m 2 + ni) and cI and c2 are arbitrary constants. We will set cl I and
c2 -{) for simplicity.

For (x > 0, and letting ql - I + 4(1112 + i1), we define

rh r = (2• [6.31

Then for r < ro,,



227

_ r)

Sq_ 2q f 2q (1 - X) 2 dX 16.41

This integral is just the incomplete Beta function of arguments 0 41 ]
For x > xo,

J _._ 2q
=q (2a)

01

We have numerically calculated the difference A(c) and the behavior of for q =2

and ax from 0.0 to 0.05 in the range of 0 < r < 5, is shown in Fig. 2. The critical value
for ot = 0.04 is ro = 5 and for a = 0.05 occurs at r = 4.47. As the figure shows, the E
needed to reach any given location (r) rapidly becomes larger as the magnitude of disorder
(a) is increased.

4

Figure 2. The dpendence of (afllinc paramcter)(1 y o minus (atfine parameIer)t o for
0S (% S 0.05 and 0 < r 5 5.0.

--- 4
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Conversely, r rapidly decreases for a given t if ot •: 0 as compared to a = 0. This would
correspond to a retardation of either light or graviv itional waves. We have also calculated
the value of this difference over an extended ranje of r for (X = 0.4. The dependence of
A(%) for a fixed value of a (a =0.4) and q=2 is shown in Fig, 3

As can been seen from Figs. 2 and 3, a radial null geodesic is retarded by the
presence of a random source (as compared to zero disorder). This behavior is reminiscent
of the slowing down of localized particles and fields. The electronic and EM -localization
properties can be measured in the laboratory; but terrestrial gravitational fields are 40
orders of magnitude weaker. So, GR- localization effects may be observable only in the
cosmic scale. However, the non-linear, self coupling not included in the above calculation
can amplify these effects. Even for photons at high intensity and strongly scattering non-
linearity is knon to produce super radiant behavior.

,2-

I, ':
6 6

S 4

011 20 30
r value

Figure 3. Affine parameter dill'rencec for ox = 0.4, q - 2.

7. Scattering of Gravitational Waves and the Rayleigh Cross-Section

ABefore proceding further we make :, number of observations. All modes
(frequencies) are not equally localizable. 5 High frequency short wavelength modes lie in
the geometric optics limit and behave ballistically with little interference, For ]long
wavelength, X, the gravitational quadrapole 6 ,7 scattering is dominant and the scattering
cross section Y(X) is given by:

E(k.) - (X--6) 17. 11

Tl'fis large inverse power law behavior is similar to the well known Rayleigh cross-section
in the dipole scattering of light. The gravitational cross-section vanishes more rapidly with
an exponent six compared to the fourth power for light. Hlence, back-scattering and
localization will be strongest over a window of frequency with intemiediate values of
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wavelengths i.e., X - (yl/2) -1< ý < rcriti = rc , where 4 is a measure of the spatial
correlation length of the distribution function . (r,t).

8. Cosmology of a GR-Locallzed Unlverm

In the primordial explosive models for the universe (such as the big-bang), the
quantum and thermal fluctuations of space-time and all fields must have been highly non-
uniform and randomly disordered at very early epochs. A detailed general relativistic
calculation including the non-linear interactions is very complicrted, so it will not be
attempted here,. Instead we will reason in the big-bang universe disorder may have been
sufficient to induce localization of the type discussed above. 4,5

Under this condition as in any random-walk, time evolution will be determined by
the random fluctuations and not by inertia. Propagation will be limited by the diffusion
coefficient D(R). For gravitational propagation in a "OR-localized" universe of radius R,
D(R) may be obtained by extending the scaling theory results, i.e., 5

D(R) - cE(r,)-1 +(R)-I) [8.11

In Eq.[8. 9], c is the speed of light and R = S(t)Ro, where S(t) is the cosmological scaling
factor. 10' The Einstein relation8 for D, and Eq. [8,91 may be combined to include the
effects of temperature (T). Hence, the dynamical equation for S(t) is modified. In the
Newtonian limit, with D(S) given by Eq. 18.9] it follows that

d<S t)> cGd - _D <S>- 2 . [8.2]
dt 3 kT

Eq.[8.101 shows that the rate of cosmological expansion is controlled by the two
factors D and T. Paradoxically, an increase in the temperature slows down the expansion.
This is a manifestation of the fluctuation-dissipation theorem and is physically due to the
increase in the frequency of scattering at higher temperature. 5 Let us investigate two time
regions. At very early times when R<rc, Eq.18.101 goes to the limit

d < S Q ) > cG c Y, < > - 0
-- - 3 IRS

During this period the expansion rate <S> - t lY/, with y4 . At later times S increases
and R > rc and the rate of expansion is given by

d<S(t)> cG ce S 2-dt-- 3- r s>k 2--

This epoch has anexpansion rate with y = 3. Both of these values (4 and 3) of the exponent
y are higher than the value (2) of the classical Brownian motion expansion rate exponent.
Either case represents "critical slowing down" reminiscent of critical behavior observed at
phase transitions.
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These rates are much slower than that predicted in the conventional non-disordered
cosmology. Such gradual expansion must have held the hot primordial matter close
together for a period longer than has been previously anticipated. This retardation
effectively increases the strength of the gravitational interaction G in the primordial
medium. Strong interaction could have helped the matter condense and precipitate at
randomly distributed nucleation sites. Such precipitation in condensation cells where the
effective G was large may have created the structures and non-uniform distribution of the
matter presently observed in the universe.
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ABSTRACT

We point out that in two-particle Down-Conversion e>,periments the photon pair is created in
an entangled state, which leads to multiparticle interference, as seen in coincidence counting
between the pair. We note that this type of coherence is Mfferent fmm, and incompatible
with, standard single-pardcle interferencc.

First, I would lk y homage to Yakir Aharonov, and congratulate him both on
his birthday and on thi ,iderful symposium, whicb is worthy of the occasion. I had a
friend who, on his sixtieth birthday toastad himself with, "Well, I'm halfway there!", and I
wish to Yakir the same optimism and promise of continuing youth and productivity it
implies.

This talk should bt. seen as - sort of addendum to the talks by Profs. Ray Chiao and
Anton Zeilinger at this symposium. They both talked of the wonderful experiments that
ha-ie been performed, and are yet to come, with parametric down-conversion. t I am
merely going to examine the production process in the light of the superposition principle,
in order to show that superposition with many particles is even richer than it is for one
particle.

In the down-conversion process, a single photon hits a non-linear crystal, and two
photons emerge. Inside the crystal, energy and momentum are conserved, which correlates
the momentum of the product photons. By placing a screen on the side of the crystal where
the photons are emerging, one can put pinholes so placed as to guarantee that the emerging
photons have the correct momenta to satisfy the conservation criterion. We shall make a
simple model of this process that ignores the dynamic details, and only considers the
waveii!-e feetures consistent with superposition and the uncerLaintly principle. 2 ,3

To this end, consider the totql momentum of the photons as zero, to within the
uncertainty principle, as guaranteed by :he size of the crystal and the placement of the
pinholes. So the two photons v6;:! ý,•,..rge on opposite sides of the crystal, each pass
through two pinholes, and thc.n impinge on a screen, as shown in Fig. (1). In an actual
experiment, the sceten is usuUllv replaced by a beam-splitter, where photons are shunted
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into one of two particle detectors. But this is a complication that does not affect the physics
we are considering.

Fig. (1). A simple model for two-particle down-conversion,
The perfect geometry to the center of the pattern is indicated by dashed lines.
The s(•lid lines represent the actuald paths from O to S and S'. The position of
0 is given by (x,y), and of S and S' by s and sa.

The amplitude a(O,S) for photon I to go from the source point () to the screen point S
will he proportional to

a(O, S) -(e•('+0  ) + eal t).1
From the diagram, we see that

l =(D-s)2 + L ~-l-Os/2, 12 .- 1÷0s/2.

l• -l-O/2-x, 14 -1-+-y/2-x.
Thus,

•'2'O, .S) -ek( 2
J- c)"'os (s + y),

,•,•t A.-.•... SjA -ie.."ly, the amplitude a(0,S') tar photon 2 to go from 0 to the point S'
on the other screen will he

a(O,S') -(ea'+) -D eO4 S"': )

-e'4(21+2cos•(s" +- y),
since

This leads to a result for the amplitude to detect both a pho~ton at S and one at S'in
coincidence. It is
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All A12

a(S, S) =J fJ 5 2dxdycosA(s+y)cosA(s'+ y)

-COS-•S cos-s', A <<;L/0,

~cos (s-s'), A»>>A8.
The limit A << A•l represent,; a point-like source (much smaller than the fringe spacing at
the screen), and is the usual criterion that must be satisfied to see fringes from a single
source. From a source larger than this, the fringes at the screen will wash out. In our case,
such a Lmall source will create two independent diffraction patterns at the two screens, so
that we will have each photon leaving the source and acting independently of the other.
However in the limit A >> A,1, for a diffuse source, one sees a correlated two-particle
interference pattern. One sees the two-particle pattern by having one detector at point S at
one screen and the other detector at point S' at the other screen. If one sits at point S and
varies S', one will have a sinusoidal counting rate, P(s,sD)-la(S,S')12 ; varying with s',
which has a 100% visibility. In this case if one counts a single particle, say at S, without
simultaneously detecting the other particle, one will find no diffraction pattern. The
probability of detecting a single particle at S is independent of s, since in this case

P(s) = IJ %-'jl(S.S')}l = cofst.
The interference only occurs in two-particle coincidences.

There is a simple physical reason for this result, which is truly quantum-mechanical.
Normally, for single particle diffraction from a source, through a pair of pinholes to a
screen, one knows the position of the source accurately. This is due either to the source
itself being small, or through the use of lcns,.s to position it at infinity, so that the wave
fronts at the two slits are correlated. This emission from an effective point-source produces
a diffraction pattern at the viewing screen. In our case of two-particle diffraction, neither
particle by itself forms a diffraction pattern, hut the very fact that one of the particles strikes
the screen at a particular point S implies a certain knowledge about the source. It says that
the source is most probably located at a position O such that the difference in the two path
lengths from 0 to S is a multiple of the wavelength, so that they are in phase. Thus the
very fact that one particle lands at S sets up a virtual lattice of probable positions fot the
source. '[his in turn will produce a diffraction pattern for the other panicle at the other
screen. So although either particle can land anywhere, once one has done so, it is closely
correlated to where the other particle is likely to land.

One can also get some insight into the process by considering the emission in
momentum space. For a large source one has A for the transverse siie of the source (in the
y diremtion). This implies that (*) - h/A, and since for a large source, A >> X/O, this
says that the angular spread of the emitted photon is q) - 4u, / p - h A + << / A < 0. So the
ange•ar spread is too iarrow to encompass both slits. The photon goe.: thr.)ugh one slit or
the other and there can be no interference between the two paths. On the other hand this
very narrowness guarantees that if photon I goes through the upper slit, then photon 2 will
go through the lower slit, and vice versa. So the two photons are correlated and the wave
function will be

V - (I k),-k), + I-k),jk),),
an entangled state. On the other hand if the source is very small, we will have 0p >> 0, so
that one cannot tell which slit photon I will enter and there will be interference between the
two slits. This same lack of definition oif the beam guarantees that one also cannot correlate
the slit for photon 1 with that for photon 2, and so one will get two independent one-
particle interference patterns.
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The lesson we learn from all this is that there i:, a complementarity between one-and
two-particle interference.4 If one is present, it excludes the possibility of the other. One
either has correlated coincidence counts between the particles and an entangled state to
describe them, or one has independent interference patterns for the separate particles, and
one describes them by a product state.

As a final note, we mention a three-particle source. The importance of three-particle
sources are that they are needed to create GHZ states, to test Bell's Theorem without
inequalities. 5 Here three particles are emitted in a plane. If they are identical particles,
momentum and energy conservation says that they will be emitted at 1200 with respect to
each other, each with the same energy. Apain we will assume they are emitted at some
point 0 within a source of size A in each dimension, and they land the points S, S', S", at
their respective screens. The source is again taken to have coordinates x, y, as in Fig. (2),
and the amplitude for landing at S, S' S", will be

(b)

S.

Fig. (2). The three-particle interferometer.
(a) The perfect geometry; (b) The actual source point, 0, and screen
detection points S, S', and S", defined similarly as in Fig. (1).

j •( A1 2A2

a(S,S',S") -J fA,,I_^2 _, dya(O,S)a(OS )a(OS")

-cos (s+s'+s"), A>>./0,

-coS.scos-s' costs", A<<;z/0.
So once again we see that for large A, we have an entangled state, this time between the
three particles, and in thir: case there is neither single particle, nor even two-particle,
coherence. Also for small A, ws before, the three particles produce independent product
amplitudes showing one-particle interference, but no multi-particle correlations.
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Abstract

Ali examplpe of (ianitumu norn-beauLty IIis prcSfii Lcd ('Ilii go d s v1(0Ald ra"

whitrh illustriates Bell1's Llivoreiii withoult P~rIoidillitieN. A scheivie is theni put
forward for t he ol jucti ye reduclltioni of the qplai toiin State vector Wlt cxi too I arge
di9iplaCIWIIeitii id IIIWSS are inIvolved i (iill asuerposiiitionl heltwelill two (piwiaitil

state". III this 5diIei~lI, the redulction thiie is roughily thev reciproCAI Of theV Kray-

itatiolkid sovlt-eoerg5' of the (lifferelicc of till two inias distributimois, ineas-ared
ilk absolliIU! lii iits.

It is i a plnewslir to be' able to iiay Illy' 1l'iJ)C1s to Y; kir A Iiirono v ill hon11our of
his 6011h birthd~ay. I slorhi brielly (lemeribe two illeil; that have to dto with that,
suhiji-t - Tpinishon lfliechlsi~C.q -~WhiChl ha-.s ClilýLgCdl SO 11111C.11 4 hiS alttenitioli, Mi1d

to Which h lo a~s nooke so 1100 y surpr isin1 g 10111 p r f 0111(1 co litribl iti (0:; is. 't'inf .
i's al: ex a iphe that, illust'rates onie oif the till ory's liiiist p 7lizting iei d. ill-v.is (Ilailt. Lll

(Bell) non-lhwality, withouit probadbilities. 'J'hic :111c1rpl~ nili it ile 11g~ on im lie

1 Magic Dodecahedra
I hiavc (liscril nd thit lion loclih)c ty examlelildseV id ti ii es vi seWlivI2 ls it, will
nlot be liveI.'s:Lry to givc III'n 01:11i a Very hirici olitfilie of' what is ilVlivivd. Thc

systeiii is nisist.s of t wo atiti (11 of :ipini 3/2 whichl (IC i iiit. i idly 111:111111(1 i 1sHill ;.C I~i 011

.5 t h ote dii sh il (i n tlcl ix ini vs i d u aly S spills. t( a' n II ii ll hcit " al n . ll b s eqf u eO l i l l' 111( o il

the twoI at~ollis indivihiiuilhy, ilhhl IlICilSIIeFlClIIt, 1)(iiig if ;L )itI S /ni kes in) 1(01(111

colresjXoiuls to oil, oi f 20) possiblle dirlectionis ill spacc thlIJIS whichare IO iljlr.sillt.((ib1

Oile vert~ice(s of aL legillil IhohlcaldieIroiI, ;;11W5SM lle(Sillot. frI (ll thlU (ClitltN. Thl S, WIv

illiagil ic two widely .4epari ;1 led buxt paralldel-orieiltedl regill 111111 Iho~ dlier;L ( which I, forl

a .,tui rcpciey, cld oC Iif which( hals a spi 3/2 ato iii a t its I lit II LEmli
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nirwasureinent would be defined by choosing one of the vertices of onle (Iodecahoedroil
and ascertaining whether the amvount of its central atoml's spini ini thant iirection -

i.e. the mvIlVIUI;, inl that direction - havs the particular value 1 /2. If this is found to
Is; so, then this is the answer "yes"; and one envisages tlhat a he'll rings, indicating
that the measurements onl that patrticuilar atomn have comie to ain end. If thle value
1/2 is not olbtained ("no"), then the three- possible m)t$1/2 states (niamely 3/2, -1/2,

mecasurement is repeIated inl somle other direction.,

F'or example, we could enivisage performing the ineasurenment with a Sterni-
Cerladih type of apparatuls, orienitetd appropriately inl hre chlosen direCtionl, aind whereF(
oiily (Itc of the four differenit brwains (the one corresp)ondiing to Tn- 1/2) is exaineiiitd,

yii'lihng the "yes" aiswer (bell ringingl if the atomn is found in that, beam,. Oth-
erwtse, by app~lrop~riate reversing (If time muagnmetic fields, the three reiimailimng bralins
are 1broughit togethler Without Ilisturimbing their relative ipli;Lsts. Aim exactly similar

S1)i1111mnWasulrCmimen is tIhe 1w rforinid ~il soni li other directionIi, eorrespo Oling to a

There are jits t two dlilletrxit. Irt Ijiries that, we shall neced, ecuil'Irmii g the re suit's

O~f OW m joijut, timeast nemne tsU of this tyj )e thdCatl 6-u lp erfornmetd on the two aLtoms - 1 by

myself here oil earth and 1by lxily enileagium Aliv St11-Uri , 'il (v- Cellimt i. Th1(se cOliciul

SI ;tplveii s of ineilmsitrcim ci its of the following typeit. One! of tIn' veri ces of t1o e do eca -

berolIlii is s~ingh xl oim I, - caill Lhis vw 'rte(x tli# SE ELECTE])on O on] ;Ul i '1 ismas ;x iwoI,:; are

]II'rfomilo'il correxjolmllnimg to thin tinee vertices of teI'l(- I'dcaledo;IhI' lmLat, are w~adyce'at

t~o time SELECTED ont; (1 it not in the dlirectioni of thn; SELECTED one itsi'lf). It
immny ih' ;iseli'rtumed that, the es''" rigelie; -s of these thireei ineilsmviml'ncis Iti' all
01rihw/om ll to(114 oLii tllelr, ti ld it. folilows that1 thn' threveit; nivsuliuivi l'ts Ilecevss idly
criimriic so it, makes nt dilfemI'ilCt ill whiCh order- tIn' threeC illI II'W4foi-1 I[d WC

thtliiee the1 lstl. ofI lt'e two propeIIIrties5 O~laf. we Shial1 
hits1

:

(I1) If 1,1- Winn I ll;Lj)ie'il to S)ELECT diIlhncdIricalLy oppomixle vI'tie hrli n our

rI'sliI'tvt'V 'lderslm1edlna., thenl tIn'l bl'l rings for olie of ilyuasiim't

if :Oid only if it. rings for (Iii'S ili:Litn'tril'llhy IIý1 )0ijh~s' umensiio'iio'IWil, thIis
hIeing 1i rej Orit ~ wIn-dillr it r-ings oil t,11c fimst., seicoind, w. thlird( of the'

iimWiSiir' IiutmIts lodjaveimt. to our S ELECTED) vert~ivc.ý

Thel esecoiil jiroj'vty is IL little InnyhI'r tti rscls''tilix, nihimlm tis (;ll n be(oo'
without. furtherl t'xjliI'it. iIclclatioill (If. i-cf. I for mita~il;;):

sliI'(tivt' d met;I'xlii;rIL, t he'i S cl;h'l izeist, rinig fox' at, b;st ion' of' tlh'si
innifin 'iiie 'its thma 

t 
we proos Ijti~t Utii; 1,(.

If wvae i' ti i issulmce dud,~ till he~ll rimigings hit; (tltirniiiiied aictirl-ixig to soitiit
hixll( of local( liildei-i Variable it; vhll; or, siixijly, tiuLt. w~hat hmpplLsoil'e (Ii I -Ctunitimi
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is completely independent, in the ordinary classical way, of the mcaslirensents that
I choose to make here on earth, then we can quickly deduce three things concerning
the results of measurensents on toy own dodecahedron alone:

(a) Each vertex of msy dodecahedron is preassigned as either a bell ringer
(colour it WHITE) or as silent (colour it BLACK), irrespective of the or-
dering in which the mewsureinents are made adjacent to any SELECTED
vertex.

(b) No two next-to-adjacent vertices call be both bell-ringers (WHITE).
(c) The six vertices adjacent to one or other of a pair of oppiosite vertices
cannot be all silent (BLACK),

It is a nice cornl)inatorild exercise to show that no colouring of the vertices of
a dodccahiedron WHITE or1 BLACK is possible, according to the rides (b) and (c).
This shows that the assumlption of classical independence hltween the atom here
On Vrith and the atom on (a-Centuri inist be, false - assuming that the expectations
of standard qutiontm theory are maintained. In Einstein's terminology, there is
a "spooky action at a di.stance" between the results of the illCastirellments oln the
spin 3/2 attmxs that Uri and I might choose to make. Fo r earlier xampqles of Blell
non-locality without probiabilities; set:4-l, and tin review articl by 1hrownili; isO
"1-1:' for results that can he adapted to give 11011-local Cxoil)lCs of this naturC.

2 The Role of Gravity in Quantum State Reduc-
tion

I have frequently argled the case ttat the phi no:nctioln of AtMte vector ii c'tiot
must be a real physical effett of soln kild, and not just an illhsion, or at proplerty of
conisciotus observers, or just some tricky matter of finding tVic right "interr;Irttioni"
(If the quantum formilisni. Moreover, I liVe j;aint;uinCd that tIel physics thlt is
involved must be something in which thu effets of graiuty are crucial (ef. also 1- IT).
Of course, it is clear that tlhre arc many differing viewpoint:, with regatrI to this

phleioiolenon, and I shall certainly unake no serious attcIl)t to convert usybltly.
The motivations that underlie my own ttl)l)roachl are vwrious, libt I lmli(ve thatt a
ininiber of indoetundent argltsluIets (:all nie given in favour of a fundatltnt;d roll for
gravity in qu(atitiit state reduction .

For me, one of the strongest Cs01leS from the study of the spaeu;-tiuer .AintularitiCs
in the big b)ang aid hlack mileCH. As a fun.dannntal ingredient to the second law
of thertoodynannics, it is necessary that ti, big hang's sii gitlarity inust htvc been
UlinrtnlOuusly constrained .. to such atn extt'sordinary precision th at only onun part
ill (at least) 1011'2V of the availablC p)has space wWa nade ose of. (Very likely,
the precision is cOnside.rably greater than this, depending upon the actual baryon
content of the toiversc the precision being initnite fotr a spatially infinite universe,
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This figurre is calettlati'd ott thle basis of the ijekensteini- HawkingX formula for black
hiole entroply, iL5Uiliiiin ia total llliryori content of abotill 10"). Trhe iiecessity oif this
kind of precision is not remnovedl by inflationi1 .) It is this eutirmiins icoiistratint oin the
gravitational degrees of freedoin in the early universe, together with thec fact that the
smlgUIlrnities of black holes - or of anl all-emibracing lig crunich - sceem to he subjecti
to ijo constraint at aill, that gives uts the powei'fnl second law of thermodynamics
in the forum that we know it. The1 structure of space-timec sinigularitieis is generally
accepted to lbe IL ijuitiituiii gravity elfect - 01'at least aim effect of whatever time correct,

union of quiantuin theory with gravitationatl theCory Might be. SinceV time inlitial and
final types, of singularity sceeni to imeed.( to have such grossly dlifferent structures, this
strongly iniraitvds that whatever this qtmanturn-gravity union iuigist turn out to be,
it must be a tiline-asynmnietric theory, The indications are, therefore, that somethinig
imore titan jusit tlIC standmaril tinie-syminnetric proceditres of iontary evitliitiniii tist.

be iimvolveil; time tune asiymmetric phenioineitoim of (ji1lantllnik state redtictioii mu11st
also be part (if this entire unified pictuvre.

It is possible to Ie inmore explicit about this link betAween the time asynminlery (f
spiacetfinm singulmuities andt that of the reduction p~rocedutre","', bunt I have no wish
to repeat the arguimients iii dealtd here, The- esisential p)oint is tha;t the com11plica~ted

high-entropy singubirities of gravitational collapse serve to "iais(Irl iinforillItitil",
aloisinlg; InOffctAive re(duction0. in pltINse-SjiMCiu vohinme1. Over the !totiihity of ll p)ossible

s tates, this imni1st Iv pe~rucisuly 1 alamiCed b y aL VTcrSlI)Oldli g eAffect1ive anLC7rem4( rin

jihase- space vohunle that resut As fronii nil inzulternliinaCY ill the( evolution OIf p)i ysical
systeits. This jioletern iiliILCy is arioLtO1) tI tht, whlich is arises inis~t-e o

redui ctio n. ('lThe 1111aseu-space! Voliumm inerT se 111'18ie il l Vieet, who~ n in- state get';

reibseed there are several (lfiC1tero alterna~tive outiltl Its for et-1 Lii lliiiti; whragi u 'm

th e ouitputt, there is generally only oiie plawisii b ii qit that nteei 1 )v e olishbii A.c) 11t
iOtis0 ileciessiry 1 IaiLvt e 1 letween!I tIhes twVo SCellin gly di1 41Inate I)RC Ox oif 1 1 i

tha t tells its that tieisit twon parts of phlysic(s mus11t actually bV ((1lV iLliIItlt 01(S1110.

Thuis, not only is the tnt c tune onf ,;lpaLce tiii siingtularities andhi ci lst op iiitly also

theHcI uncld law (if thnincri llynalnniCS -a qum1aututiis1 gravity effect, 1iltit;, RSI0 lxiM mbieti

the veriy Irocess of qutlllt li staLtveduiItcitionm.

I Ihave urguedi 1 arhiei that stl te risbict Pio shoudd ))(- 51 will inyhu ll tht ioiivL (111 Ildni

When space-t.iii n' win ildI have to lie supiapt ose I which differ 'loto lilt ic
1  froml~ on'

(Lhllothr, ill tlie SenIle thaIt thle iliffiremic' lietwcien I'lle silnce-tilito's is of tlit( ortdei

of "iole grlavitolil' ori nlone (so Illeatbhors suptiininsit olso beitwei'n skimfiicielilly
dififerent, space-itiment geoicmmtries), I haive xxow conlic to thi concl lusiion that we shouldI
not rigardl tlmis ineaitsur of diff retlene as5 ri lresntit ig SOli'(t liillg aL sollutt - for Whlich

P IILIltI 111 lilme'ilT stiperp ositioi 11 wtild b11le fortI iddii i wletitowll this Valv~ ii s is is in Idc.
Ridaller, we xhli tb conidemx r that th(i ire is aL rate at Wh ic t'i t i ll, itl ax wet Is, thi s
rate bitn g hirgi' fo r space- tit ins that difrel 1by a largi alllnu (llt, a~ndi ;I InI;l, When

the xi ilpae-ti lilt5ii do unit diffir lititI I, TIhus tlle e! i:; ti ie al'L ilnstiadf i ty ittvivolet ill

"Oiii L tilli H lproitionxs, givi t g IL kind of half- life! for the s111 rpoxed staltte, t~haot is
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of the ordler of the recipjrocal oif the appropriate incasxsre of the differnceic betweeni
the superposed states.

What is this ineastue of dIifferenice? fitit recent iartiCle", I ga)ve! 80111C ratict!l'

tenuous motivations for a mneasure of differenice between the two weak (pxxlis-StiLbiC

gravitational fields that are associated with two different Newtonianm inxuss distri-
bu'tions. This cani be reformulated ws the gravitational .wlf-cncr~qy of the diffvr-

CUtCC between the two malssS distributionxs. Thei pre!sent ptroiposal, then't, lis to take
this self-enlergy E, niewsured inl Plaanekian units (i.e. the ahxiolufte unlits for which
G =c = It = 1). Thenx E-' give4 tsointthing, inl Planckiati units, that, is of the order
of the timc that the superpTIosition ptersists before it reduces to thatt givent b~y ivitier
one 11IL55 distribution or the other. That is to say, E-1 is rouighly at lIkf-lifC for' thu(

superposed state to decay iltO oneC State or t he other.
There is at particixihir advanxtage ill Ia viewpoint, of this niature tiat. not, shared

1by mUost other jtit t0it ttLIN fot' "reailistic:" iiltuttitili state mdc htiotx (sM( -x aLs' 1ItL a f
G liii'rd i, Rhximini, and~ Welx r"t). Ill tihe eaeC Of al mtl x118itb' Ixarfix'l, tUi o'x is al w41vsl

a unertainty inl the imass of the ptbtticlx', this mltxxCrt;Li~t i ttt o hc
It =c =:1) becing of the' ordier of the receiprocal of the lifetime, Tihus, for ally state-
reduction process of the gc genertLI kined th at I anm prop osin g bert', wc tx it rt sonict

kind of niass energy imct'xrtainnty that. is ix therex t ill the 411)TIMM'dx xsA'isat'v. Wi tit the
presenit propoid, this 1mxAtxccrt tuty woul1d have tO he Of hl! toMI sante tt r ils Utix sClf-
tliergy int the gravitattix lun field I f the cliif('rclt txe xtmex'tt the Lwo xxx~z ass istriblxx iti('xx

undce'r cxonsideration. TI is self- energy, acco~trdintg to claSSiid cal get rlbh dit I L.i ty, is Hotex
well Iclt iisi - or, at leuat, it is nlot O(Ait )c LbI'/tl ilt ;L ct I ctii iat,' indic'i~vit i 't way.

Ili classical ge neral relahtivity, U xis is anl inlherent featr (in' fc .liv bitt ory. Th'le
x(iaix~titY TubI tha~t occAurs ill E4iixsteixi',s equa1tionl ]? -l/,,b 8ir Ies cxiii xx xii
bthe eniergy of matite r, bunt it do xtes nt; dlirect~ly tatke i nbC :bcc(Oxlxb t lIC M ic rgy inl 1,ite
gravitationxal li hi. Thxat ettex-gy is litt n-it tal, anid t ~tt caIt, be' nittl t ningft tiiy ass i gt t

ait local nlexwgixxre of tIicsxi by. 9,11l1ts, tlite id is itt' tensil er fxilailtity, tixhxi tt'Ix i tt of ticxI t-

tiiixate chitetiS, Whith iii t ibetti s tihis cix 'rgy. Ne'vt 't'tlx ls's, gi Lvi bibtit x t x fit it I x'Ii(i 'ry

is "real"p~, ilk bitt sexise that It, ttnst, fbt taken intxo ,accxtxxtt itt phiysicald lit'cxt.x"ix', il
tLS bite (ixtsitivx ) iettr'gy tixat is 'arricil away itt ithe forxxt of gravi titiixtllbi rndat lxtt x
froxxxx alob l tcixlttteivtrttt d.;' I systitto, or c it'l (Itegative) cocuxtibixt~icxxx to ,x c tttx Inusltttts
ofi a celestial boidxy, sixcxti .1 upi bet, o witng to its, gravit at ionalx sw if-x 'xix egy. litowe'ver,
lthe il'tLsS cxixlmfgy ill griavi ttitittt is tR ft xxill et Litaldly xliij)I Tey xJM~tiat~ ywii'itV x ixiix

lbt 11lltluitxgfithly lccx'xti'zct.
A featutrie of btte presenlt I crolpt cxIi ft x' tjxlibIbllt x11 SUC lllbetslxx'6bi1tx is U)t ta kt atd-

Vanitage oxf this SliIIIecxilless itt orxder ito evadet anx onex'gy itl'txiclct tiludb 5t'1t5itt Lotbe

all tcxxctiltiaxx ft atutex cof anx y titllitxi of stabte itchuctixon ill whitchxl tixab 1t. 'roes is t ci.0'i

1t0 IMit! It "Wtidit  lAIIxtlclte1txl. lWieid'tly, if "xfcaxxuxL1 jtix titS"~ lilt'V 1.0x~x be itt7th,
t1icti bitt ttllL~iS ix-trgy ditibutiixttitll Iii lx y5'tnit txildrgttts tclttxl Vil:tllbixtltS ofi x'tit'rgy

cittxservt'v itxx wie ltbitt j unxx jt ccts. Ir l the oit rigitnal tot (IIcic ittx sc lixeixi xitt4. to Chli-

nirt ii, Mlitncim, aittc WehIetr 2 ( G I M), ftorx etxamplex, bttr is It sxintalxl cx rgy vio tlationt~
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invlvediM ill the "lots" that effect the reduiction process. One(, of the pchysical ingre-
tiliits of the preseiit shelllivc is that there is the p)o1tential p)ossibility ol tlovetailiiig

onle of these exiergy pro~ciecs with the other - that of classical general relativity
with that. of qiuantumt state rechictioci - so) that at coiisistciit overall scheme may be

obtained. At the timec of writing, however, I have riot worked ottt the details of how
this dovetailinig is fully t~o ticke place. It should be poinitedl out, moreover, that the

gravitational variant of the 011W scemiiie put forward by Didsi'7 hints considerably

more serious energy ptroblemns tlhatn the original GrkW schemei - to the extent that,

it is inl gross Conflict wit obevto, aswas p)ointed out by Ohirardi, Grassi, and
Rimcini"3 . These three mivithiors suggested at modification that reniovcd this obser-

vationial colimlict, bult at the c'xpeu~se Of iiitrodumin~lg MIi 4d hLoc lparilelter thalt Wits

not preseint inl Didsi's piroposal1 . The pre~:euit liroliosal chilers fromt tha~t Of DidSsi,

though it has a nuinli1er of features ini e~oniii with it. More details will neved to be
sorted out before it cai lie mtsccrt~illId whe(ther', withiii the sOChieiim Of icleici tha t I
lull setting fo rth here, onie callc ,nlstnieit, a deta'miled prliopo sal that is cc amipletely fri e(
of such energy problems xi.

Inl the nlaiVltilneV, We C;Ucix t least, exanliimic' the orders of nimaignitilohi that arise With
theu icescif, scchlice. Let US fir fttaki' note theC Vallue.' of some cf the st codaLrd phi ysi cal
ixcii s iii termns of the dccimoensiociniless PIloxt'kicno cxcs (fox- whxiclh G c' ) t -- 1):

Sti.Oldlj _< 1.9 X j()4, Inlay :1.6 x 10"1, year -5.9 x 10"'
xxintru z-v 6.3 x 1 0"', till - 6.3 x 1():82, miicrcox 6.3 x 10",~

racloisl' Of m1ie~lcsm -- 10'"iu, MxiSS Of i1CICxtltsi < 10(",
grain = 4.6 x 1011, erg - 5.2 x 1I0-1, uhegre h lv i - 4 x 10

chInusity cif waLter- 2 x 0 `c4
.

If wec~tts cliqi 'i ca cxifoxift' s civii o' f radiius a atid I i~iixs mn whts isl'iiate is grac lii-
xLlly eiClvOcIV iliti IL Su11(ihc ii St 'c statev tof twox d ifferemit locatit cxc, si jc cx t(il fromx ccii'

an1oCIthe icy a% cbStxtnCe t'tiiitpiar~cih with thecir radius 4L, theim1 We finch ;L g'rctvitcttiomxmc
.,el'f cewrgy A', forc the chiflercucce 1c'cmxthec two icotucc tli:tribl~iuticcs, Whlich is thle
circler oif

Thus, ctcV~'t'ciilig tccd tl)V'jcciitsci I cccx jiuttinig fol-iwlcr1, this scqcxitp~ocsti s'tatc' ics
ucxcstctbb', anll Woufld dcec~ty aito tHc' st'ate ill Whxichl theccjchxicc' is c~il/xcx ill ccili iccaticcix
07- ill 1,11V cdliii, ill cc. tixCic (half life) thati. is of thc' giiiurccil tcxclcr of

T -- (/1'

Ill tirimis cc f tct chcuicity tc (ctsuimmxietld iixxiftccuii) ;11cd Ntitl¶lci it ccf thit ci(Cic, Ihis is vc'iy
cc ccc jrily
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T' 1/(10p~n5 ).

Now comiider vatriouls examnples. F~or at 1111ICi~'o Wassmuf1lug itS rllli~lS to be its

Comnpton radius

T -. iO91(-11ý105

> 111111 ioU Years.

Since ordilnary laboratory UXIperiniiiiits take place' inl tinic scatles thiat are munch loss

than this, there ui acrording to) the p)resenIt scheme -- 10 dlanlger of anly discilijsocy

with the p~redictionsx of standard qu1antumlil their11y for. a (11;llalt~llU ,;yste!ml cousistiiig

of just at few nuiclea p1' Ititcle. Ilil~ particular11, the 1(1s lts (If neu1 tron in temlrfeo ('iv

explerimuents are nmot contradicted. For a droplet of water, of radiusi (1, We findl,

app~roximasltely,

so we get., very roughly,

T' --- 1) da ys, if a 10 " cmil

T' 10" hecomoix, if a(- 10 (1' cm.

11111 weý s(!( utat,, illit seIIsI, it "LtmrI~llver' from ljlliLWIItIlI tI) Ch'ISi~i'd 611;iivi' 111

(occuIs at roughly a 1104rl:1 11'xale. THIv'sc figures, anid o thler r 'late 'iI(IS all, I111. att

tll munreweonai )e. Thel y doI not sI 'cm I 1 to co tmliCt.1 ALly th ing (ob viou abou~l(lt I fl~lhltll

(11' classical blehaviou~r.

Ill malIkinog this tat' 11 llelt,, 1 U111 t R1jI ig ilmiti I WCMIC(ll tWo fa dL IIS 1II t10, 12,' IIV Ilt,

invrixolliwdsio: far dJTh'7t ye frti I thatill~l wilrl WIov I~iiat VI ILhv 5i1]II:I'jl ~the~ boIli ;WLS

un1 iifrm51 )1ll(ANl and0 not w, cdl liptill of'l LIndrvi(r 1ImOLCI nuic i ll iclos Ill fact, t ll xtiys

odelinary 111bud1io tol a~~IIl si~wrIi till] ilIlletevl tw (I IIlmsel", (1If rhtiolls'lI1t, oncll'l, whi'h

fils illthrigi i tr I li;til Il th tf 611C ( lII I I flei 1111l~lu tla ;dI ratl' 1till' t Ot f Li C MIl 'dI ft. II' 11101 tlI'a

1)!tllt ,.illV. V~l u l il l'ocoi coIllI'jitliIcili"l WliIIti'Il ,1 i Ir oat~ lllI'Wili4,t ill 11ger tw lstaIll It

C110111 ) I' uSly larger ti 41 C OtII ,(115011 r ;1 Ll )VC.
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Secondly, these considerations are important when reduction occurs because
the environmraet becomes entangled with the quantumn system that is under study.
Indeed, according to the present proposal, in any practical situation that one Cani
easily envisage at the moment, it would indeed be the disturbed environment that
effects the reduction. Thus we obtain nothing different froin the conventional picture
of state-vector reduction, in which it is the "decohcrence" caused by the environment
that causes the reduction except that now the reduction must be considered as aL
real physical effect, not just something that takes place "for all practical purposes"
(John Bell's "FAPP" ). It would, no doubt, take a delicately organized experimental
set-up to detect any differences between the present proposal and conventional
quantum mnechanics. Never .heless, differences would be detectable inl principle. One(
would need to arrange things so that some "large" quantum systemn can remain
isolated from its surroundings for sufficiently long that, according to the present
scheme, state reduction should take place spontaneously within that timue-scale,
entailing a loss of pha-se coherence, Onl the other hand, standard (111,110,1111i lliellu1iiC8
would demand that such coherene would be maintained for ais long as the systema
remlainls isolated.

Finally, it should he remarked that these considerations leave ius' a long way fromi
an actual thicury Of gravitiatioma.Lly--indiuced state-vector reduction. The difficulties
of providing a vooherent picture of the reahictioma ini w-coiri hoice wi th the Ipriuiie lles
of relativity airc well know n, and were stressed manly ye.; is ago b y Yaikir andh his
Co dleaguale., 24 .
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A NON-POLARIZATION EPR EXPERIMENT: OBSERVATION OF
HIGH-VISIBILITY FRANSON INTERFERENCE FRINGES

Raymond Y. Chiao, Paul G. Kwiat, and Aephraim M. Steinberg
Department of Physics, University of California, Berkeley, CA 94720, U. S. A.

One of us (R. Y. C.) will review a series of experiments recently conducted at Berkeley, including
the "quantum eraser" and a "dispersior, cancellation" experiment, and culminating in the Franson
experiment, in which a violation of a Bell's inequality for energy and time by more than 16
standard deviations is implied. We concude that, unlike Yakir, pho-rns do not possess wel
defined birthdays.

1. Introduction

In this talk, I shall briefly review the Einstein-Podolsky-Rosen (EPR) "paradox" 1,
and then describe some of our recent experiments at Berkeley in light of this so-called
paradox: (1) the "quantum eraser" 2, (2) a "dispersion-cancellation" effect in two-photon
interference 3, and (3) the Franson experiment 4, 5, which involves the nonlocai interfereice
of photon pairs. Let me begin by stating my belief that there is no true paradox to ElR,
since there are no genuine cortradictions, either internally in logic, nor externally with
experiment. (Perhaps a better name would have been "the EPR effect.")

The EPR effect involves the interference of two spatially separated particles which
are generated by a decay from a common source S in the following geometry:

Particle 2 Prt"cl I D
D2 A2 Al D1

Figure 1. EPR experiment

The two particles are measured by means of analyzers (Al, A2) and detectors (Dl, D2). In
the Bohm version of the EPR effect6, for example, a spin-0 particle decays into two spin-
1/2 particles in a singlet state

Singlet) I ([L'l>IJ'> -- [12>

The analyzers A 1 and A2 arc Stern-Gel polarizers. Optical versions of this experiment
performed by Freedman and Clauser, o', by Aspect et al, used photons in place of the

247
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spin-1/2 particles, and linear polarizers (P1, P2) in place of Stem-Gerlach polarizers7 , 8.

YO2 7

D2 P2 P1 DI

Figure 2. Optical version of EPR experiment

The coincidence count rate as a function of the relative angle between polarizers P1 and P2
is a measure of the correlated behavior of the two separated particles, Bell 9 derived an
inequality starting from two very general and seemingly reasonable notions which were
introduced by EPR, namely, locality and reality. This inequality is violated by the 100%-
visibility sinusoidal fringes predicted by quantum mechanics, however. Most importantly,
experiments reveal a sinusoidal variation of the coincidence rate in agreement with
quantum mechanics, and in violation of this inequality (modulo some reasonable auxiliary
assumptions). Therefore, these experiments rule out all local, realistic theories.

Early experiments relied on the correlations of the polarization (i.e. an internal
degree of freedom) of the particles, whereas the Franson experiment relies on the
correlations in the energy and the time of emission (i.e., external degrees of freedom) of
the particles. These external degrees of freedom are very similar to the momentum and
position of the particles considered in the original EPR paper. Since the predictions of
quantum mechanics are so strange, it is critical to investigate them for those external
degrees of freedom as well as for the internal ones. Rarity and Tapster have already done
so for momentum and positionlO. We have recently done so with energy and time.

2. Entangled states

Schr6dingerll, in response to the EPR paper, pointed out that at the heart of these
nonlocal effects is what he called "entanglcd stat, 3" in quantum mechanics, i.e. coherent
sum.- of product states which are nonfactorizable. For if a two-particle wavefunation were
facto, izable,

V(xI, x2) = z(xI)z(x2)

then the probability of joint detection would also factorize,

IV(XI, x2)12 = JX(xi)fZ(x2) 2

so that the outcomes of two spatially separated measurenientk aic indepenldent of one
an ther. In cases where quantum mechanics predicts correlations in the behavior of
distantly separated particles, this means that the two-particle state cannot be factorized as
above. The Bohm singlet ,tate mentioned above ;• a good example of an entangled state,
since it is nonfactorizable, and leads to correlations in polarization measurements on remote
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particles. Though each particle considered individually is unpolarized, the two particles
will always have opposite spin projections when measured along the same quantization
axis. For different choices of the axe= iese projections are incompatible observables and
therefore cannot have definite values suiultaneously. But these correlations persist even if
the particles and their analyzers are separated by space-like intervals, implying the existence
of nonlocal influences, Another good example of an entangled state is the Slater
detenninant,

W1•(xl) •V1x2)-
W&O(x) W2(x2) - Vy(xl)V2(x2) - Vl(x2)V2(x1)

which predicts correlatt..w behavior between separated fermions.
In ouw experiments, the entangled state we start with is the energy-entangled state

of two phutons produced in a two-photon decay process known as parametric
fluorescence. The Feynman diagram for this process is

Figure 3. Two-photon decay from one photon

and the state of the two-photon system after decay from a parent photon of a sharp energy
E0 is given by

12 photons> =JJ dEidE2 3 (Eo - E, - E2) A(E1 , E2) I El> I E2X.

00

Instead of a sum, as in the Bohm singlet state, we now have an integral, since energy is a
continuous variable. The meaning of this energy-entangled state is that after the
measurement of the energy of one photon results in a sharp value EI, there is an
instantaneous collapse to the state

IEl> lEo-El>.

This effect has been seen in an earlier experimentl 2, in which Coincidences are recorded
between photon 71, which passes through a Fabry-Perot filter (to measure its frequency,
and hence its energy, with finite but high resolution), and photon y2, which passes through

a Michelson interferometer (to measure its width); when photon 7I is detected after the
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narrow-band filter, photon T2 collapses into a wave packet whose coherence length is far

greater than that of the uncollapsed state.

3. The two-photon light source

The two-photon decay occurs inside a crystal with a X(2) nonlinearity (we used a

potassium dihydrogcn phosphate, or "KDP," crystal) by the decay of a single, photon TO

produced by an ultraviolet laser (a single-mode argon ion laser at 351 nm) into two red
photons yI andy2 near 702 nm, in a process known as "parametric fluorescence" or
"parametric down-conversion." This process is the reverse of second harmonic generation,
in which two red photons combine to form an ultraviolet photon at twice the frequency.
Energy and momentum are conserved here:

E0 = El + E 2
Pa = Pt 4 P2

70 2)
X(2

nonlincar crystal Y2
Figure 4. Feynnian diagram for parametric down-conversion

virtual level

E0  ElP
virtual level

B2

Figure 5. Energy and momentum conservation for parametric down-
conversion

The parent photon yo is called the "pump" photon, daughter photon yI is arbitrarily called

the "signal" photon, and daughter photon y'2 the "idler" photonifor historical reasons. A
rainbow of colored cones is produced around an axis defined by the uv laser beam, but
pairs of photons on opposite sides of the cone are always correlated with each other, e.g.,
the inner "square" orange photon with outer "square" deep-red photon, etc.
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deep red

~~KDP' crystal

Figure 6. Cones produced in parametric fluorescence. Matching shapes
represent conjugate photons, while each ring represents a different color.

The two "conjugate" or "twin" photons are always produced essentially simultaneously in
the two-photon decay. They have been observed to be "born" within tens of femtoseconds
of ea t other. They are produced in the entangled state of energy described above. Due to
the fact that there are many ways to partition the energy of the parent photon, each daughter
photon has a broad spectrum, and hence a narrow wave packet in time. However, due to
their entanglement, the sum of the two down-converted photons have an extremely sharp
energy, since by energy conservation, they must add up to the energy of the parent uv laser
photon. Thus the difference in their arrival times, and the sum of their energies can be
simultaneously known to high precision.

4. The "Quantum Eraser"

We have used this nonclassical light source for a "quantum eraser" experiment.
The idea of the quantum eraser was recently discussed by Scully, Englert and Walther13 in
connection with the microinaser. Here I present a simpler version of this idea. Consider
Young's two-slit experiment from a particle viewpoint.

I path AS . . .............. ...................I ................. ...................
• .. . . ....... ................. ..... . ..... ........... ...................... .a ,/ ,- ---I * ...........

Figure 7. Young's two-slit experiment

The reason one sees interference at the screen is that one cannot know, even in principle,
which path (A or B) the particle took on its way to the screen. The lack of this "which
JJpaL' IInfL~ionation is IUflLUiUUlkCXIL tL the obseiuvahility of fere n ges. 1ioweve,

suppose we placed two circular polarizer: of opposite senses, CPI and CP2, in front of the
two slits.
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s.......I. .......! . ... !

Figure 8. Young's two-slit experiment with circular polarizers CP1 & CP2

The photons which have passed through these circular polarizers are now labeled by their
polarizations, so that by measuring their helicities, one can know which path the photons
took to the screen. Hence we shall call these polarizers "labelers." Since we now have
"which path" information, the interference pattern on the screen disappears. (Note that the
center-of-mass motion of the particles is in no way disturbed by the insertion of the circular

polarizers, so that this scheme is very different from Feynman'sl 4, where the scattering of
a particle near one of the slits uncontrollably disturbs its center-of-mass motion). Now let
"us "erase" the "which-path" information by the insertion of a linear polarizer LP in front of
the screen.

LP
CP1

s -• .~~~~ ~~.......... , .... ............ I . . , c _...............

CP2 I.

"Labelers" "Eraser"
Figure 9. Young's two-slit experiment with circular and linear polarizers

The linear polarizer now erases the handedness of the photons, which served as their
labels. Since "which path" information is now no longer available, the interference pattern
is now revived.

This particular version )f the "quantum eraser" has a straightforward classical-wave
explanation. Hence we. detd -.cd to use instead the nonclassical two-photon light source
described above, in conjunction with the Hong-Ou-Mandel (HOM) two-photon
interferometer15, to demonstrate a "quantum eraser" which had no classical analog. In this
interferometer, the two "twin" photons are brought back together by means of mirrors, so
that they impinge simultaneously on a 50/50 beam splitter, after which they continue on to
the two detectors D I and D2.
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cnincldence

(2) litaIK Splitter 35 IS

Dl " -.lv "
WV*- SP l~alv

Equal dielay t the

rath two phaotol

Figure 10. Ilong-Ou-Mandel interferometer

The coincidence rate recorded by these detectors is observed to go through a sharp dip as
the path length difference between the two photons is scanned by the x-motion of the beam
splitter. The width of this dip in our experiments is typically tens of femrtosecotls. The
narrowness of this width allow!; ,lcry high resolution in time-of-flight comparisons
between the two photons. In an experiment we have recently completed, but will not report
on here, we have useu this high temporal resolution to measure the time it takes a photon to
tunnel across a barrierl6, 17.

In order to understand this interference effect, we shall use Feynman's rules for
interference: List all possible processes leading to the same final outcome. Ilere, the
possible processes for the two photons at the beam splitter are:
(1) Both photons are transmitted; the outcome: a coincidence "click" of Dl and D2,
(2)&(3) One photon is reflected, the other transmitted; the outcome: no coincidences.
(4) Both photons are reflected; the onutcome: a coincidence "click" of D l and D2.
Next, draw all the indistinguishable "paths," or Feynman diagrams, leading to the same
final outcome, add their amplitudes, and then take the absolute slquare. Here, coincidence
detection processes (1) and (4) are indistinguishable, and thus interlfre:

Retnection -refleclion '.).ran s missioi-I -rasmissioun

LI
ampiit~t: = ._L_ [._ 1 mp-litude = 1__.j- !

C2 -2- • 2 -2 *-12- 2

Vigure 11. The two indistinguishable processes leading to coincidences

Because of the phase facto, of i in the reflection amplitude for a single photon relative to its
transmission amplitude (this is a consequence of time-reversal symmetry applied to the
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behavior of a single photon at a lossless, symmetric beam splitter), a destructive
ii terference of the "reflection-reflection" and "transmission-transmission" probability
amplitudes occurs. Hence the total amplitude for coincidences to occur is (-1/2 + 1/2) = 0:
Coincidences never occurl In other words, the two photons always exit the same port of
the beam splitter whenever the path length difference is zero, i.e., if the photons arrive at
the beam splitter simultaneously. However, processes (1) and (4) become distinguishable
if the photons arrive at the beam splitter at different times. Hence as the path length
difference is scanned, we map out the shape of tile photon wave packets. The width of the
dip is therefore a measure of the coherence length of the single-photon wave packets.

A schematic of our version of the HOM interferoniter is the shown in the
following figure:

cylindrical
Argon KDt' Ien

trombone

beam Mplittnr i

F2

Figure 12. hlong-Ou Mandel interferomneter (UCB version)

"Thie mechanism which we used to adjust the path length differcnce is the "trombone ann,"
shown in the above figure, consistinw of a "trombone prismi," which is a right-angle
(Porro) prism, mounted on a translation stage, to reflect one of the photons in a trombone-
like (or optical delay-line) geometry. Thii, is a technical iinproverfwt of the IIOM
interfcrometer first implemented by Rarity and Tapsteri 8 . A typical coincideace "dip" is
shown in the next figure:
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100
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Trombone prism position (microns)

Figure 13. Coincidence rate versus trombone prism position

Now we come to our version of the "quantum eraser" experiment. As in the
simpler Young's experiments described earlier, we use polarization as a means of
"labeling" the photons, so that we could keep track of "which path" each photon took. The
two vwin photons emerge from our nonlinear crystal with horizontal lincar polarization. Let
us add to one arm of the interferorneter a "labeler" in the form a half-wave plate (IIWP),
w1--:h can rotatc the polarization of the photon to vertical polarization. This clearly enables
us in principle to distinguish which path this photon takes, and therefore serves to give us
"which path" information. The "erasers" take the form of two polarizers, P1 and P2,
oriented at 45 degrees to the vertical, in front of the two detectors.

cylindricalArgon KDI' en
Ion laser I

IMWP

tromb~m A|"im .-elerF

"troboerrFl
[,cam splltttr

Figure 14. Ilonpi Ou-Mandel interferomneter with "labeler" and "erasers"

If the erasers were removed from the above apparatus, the "which path" information,
which we could in principle obtain from the polarization of the two photons, would
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destroy the interference pattern. It should be stressed that it is the mere possibility of
obtaining "which path" information, which destroys the interference pattern; no actual
measurements of the polarization of the photons after the beam splitter need be made. In
the next figure, we show the disappearance of the coincidence dip, in the absence of P1 and
P2, as we rotate the fast axis of the half-wave-plate towards 45" with respect to vertical, at
which poinz the rotation of the polarization of the transmitted photon is 90', which makes
the interfering paths fully distinguishable. (Intermediate orientations of tie half-wave phlte
are also shown).

250
200 mm

S150 1 la "CU AA AD

#, A lIWPatO"
Q A A

.. 100 - A HWP at 22.5"
n A A

UA A50 A& HWP at45"o 50A

-1110 -1090 .1070 -1050 -1030 -1010 -990

Trombone prism position (inicrous)

Figure 15. Coincidence rate vs. trombone prism position with "labeler" in
setup, but without "erasers"

Now we put in the erasers P1 and P2. By orienting both of them at 45" to the vertical, we
can erase the "which path" information, since both horizontally and vertically polarized
photons end up polarized at 45' after passing through thesc polarizers, and we lose the
ability to distinguish, even in principle, between the paths taken by the photons. The result
is that the interference pattern, i.e., the coincidence dip, is now "revived," as shown by the
data represented by the squares in the following figure:
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Figure 16. Revival of interference after erasure

Note that the presence of both polarizers P1 and P2 is necessary to perform the erasure,
The removal of either of them would leave one of the photons labeled, carrying enough
"which path" information to totally destroy the interference pattern. An interesting feature
of this experiment is that one can change the coincidence dip into a coincidence peak (i.e.,
an interference minimurm into a maximum), by rotating PI ielative to P2 until one is at +45'
and the other is at-45'. The data for this orientation (along with thV:;e for an internmediate
orientation) are represented by the diamonds in the above figure. (We have also checked
that the center (,f the coincidence dip is a sinusoidal function only of the relative angle
between PI and P2, which Shih & Alley and Ou & Mandel have already observed in
connection with Bell's inequality experimcntsl9, 20). Since the resulting interference
pattern (dip, peak or something in between) in the end depends on our choice of the
settings of P1 and P2, we have nicknamed this effcct the "quantum editor."

"These effects underline the fact that in quantum mechanics, interference only occurs
between processes which could not be distinguished from one another even in principle.
That is, the final staie of the entire system must be considered, including all particles which
may have interacted with the interfering particle(s), and both internal and external degrees
of freedom. While this fact is a central component of standard quantum mechanics, it is
often neglected, though frequ, ntly without ill consequences. It is crucial, however, fur
understanding the other experiments described below.

5. Dispersion-cancellation effect in two-photon interference

As a motivation for the "dispersion-cancellation" experiment, let us return for a
moment to the classical problem of propagation in a dispersive medium. We know that the
peak of a classical electromagnetic wave packet propagating through a piece of glass will
travel at the group velocity, but it is not entirely clear that one can interpret this classical
wave packet as if it were the "wavefunction" of the %ingle-photon. and use the Born
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interpretation for this "wavefunction." If this interpretation were to be correct, then the
photon would most likely travel at the group velocity in this medium. However, as
Sommerfeld and Brillouin have pointed out2l, at the classical level there already are five
kinds of propagation velocities in a dispersive medium: dte phase, group, energy, signal
and front velocities, all of which differ from the each other in the vicinity of an absorption
line, where there is a region of anomalous dispersion. In particular, the group velocity can
become "superluminal," i.e., faster than the vacuum speed of light, in these regions. If the
photon were to travel at the group velocity in this medium, does it also travel
"superluminally"? If not, then tat which of these velocities does the photon travel in
dispersive media? (We have been studying these questions in the context of photon
tunneling times, but shall not discuss them here.)

Motivated by the above questions, we did the following experinment. Let us remove
all the polarizers in the "quantum eraser" setup, and return the original HOM
int.rferometer. Now let us insert a piece of glass in the path of one of the photons:

70 (2)

JVWVV~. beam splitter

72 O6D2

"trombone" motion
prism

Figure 17. Simplified Ilong-Ou-Mandel schematic with glass inserted

This glass slows down the photon which traverses it, and in order to observe the
coincidence dip, it is necessary to introduce an equal, compensating delay in the other arm
of the interferometer, by adjusting the "trombone" prism. We measured the magnitude of
this delay for various samples of glass and were able to determine traversal times on the
order of 40 ps, with 4 fs accuracy. In this way, we were able to confirm that single
photons travel through glass at the group velocity in transparent spectral regions, an
interesting example of particle-wave duality.

Let us consider for a moment the limiting resolution of this measurement technique.
[ie interest of measuring optical delays is greatest for media with dispersion. In dispersive
media, however, the broad spectrum required for an ultraf't pnlse (or singhI.-nhoton wave
packet) can lead to a great deal of dispersive broadening. One might expect that this
broadening of the wave packet would also broaden the coindidence dip in the IIOM
interferomnter, since the width of this dip is a measure of the size of the wave packets
which impinge on the beam splitter. For example, one expects a 15 fs wave packet
propagating through half an inch of SFI 1 glass (which we used in our experiment) to
broaden to about 60 fs due to the dispersion in this glass. The nature of the broadening is
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that of a chirp, i.e., the local frequency sweeps from low to high frequency (for normal
dispersion, in which redder wavelengths travel faster than bluer wavelengzhs). Hence the
earlier part of the broadened pulse consists of redder wavelengths, and the later part of this
pulse consists of bluer wavelengths:

IS e -60 f[MC Chirped pulse Ls

a- broader and has a
lower anmpitude.

L - 1r2n -.rd
blue -green -red

Figure 18. Chirped pulse due to normal dispersion

In our experiment, however, we found that the combination of the time-correlations
and energy-correlations exhibited by our entangled photons led to a cancellation of these
dispersive effects. While the individual wave packet which travels 1 It the glass does
broaden according to quantum mechanics, it is impossible to know wicther this photon
was reflected or transmitted at the beam splitter (recall Figure 12). This means that when
an individual photon arrives at a detector, it is unknowable whether it travelled through the
glass, or whether its conjugate (with anicorrelated frequency) travelled through the glass;
due to the chirp, the delay in these two cases is opposite (relative to the peak of the wave
packet). An exact cancellation occurs for the (greatly dominant) linear group-velocity
dispersion term, and no broadening of the 15 fs interference dip occurs. This is a direct
consequence of the nature of the EPR state, in that it relies on the correlations in one
observable (energy) to maintain a high degree or accuracy in measuring an incompatible
observable (time)l

argon ion KDP crystal cyl. lens
v lae sga glass Sample

I Ider-• "--• " (length L)

(optical delay c) Idl--r

trombone prism 12

-1 2
cxpt'rmeiitcounter

I igure 19. Dispersion cee!ation experiment

The apparatus used for this experiment is shown in the above figure, It is
essentially the same as that for the quantum eraser, minus all polarizing elements, but plus
the glass sample in one of the arms of our version of the IIOM interfcrometer. The
resulting coincidence dips with and without the piece of glass are esstntially the same
sh-pe, as can be nen by comparison of thie following data (the dashed curve coni, sponds
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to a theoretical 60-fs-wide wave packet)

Tine delay (riee) .121 4 . 7se .7 3 4 4 24 4. "2 . .2. .
Time dela[ (fsei)

Figure 20. HtOM coincidence dips with glass (left trace) and without glass
(right trace)

We see that there is indeed very little broadening in the data with the glass compared
with that without the glass. Certainly, broadening on the scaic of 60 fs (the dashed curve)
is ruled out by these data. A detailed theoretical analysis prcdictcd these results, in
agreement with the simple argument presented above 22 . This result is important for
applications, e.g., in our tun' 'ing-time measurement, sincc the sharpness of the dip-- and
hence the temporal resolution-- is not appreciably degraded by the presence of dispersion in
the opticald elements of our apparatus or in tLe sample itself. One lesson learned from these
experiments is that the coherence length of the wave packet is not equal to the width of the
wave packet, as wa•; also demonstrated by neutron interference experiments.

6. The Franisot experiment: Interference between two photons in separated
Machi-Zeloder interferometers

Let us begin with the conclusion which we reached from the Franson experiment:
A violation of a Bell's inequality fur energy anid time is implied, thus photons do not
necess'arily possess a well-defined energy (or co~lor), nor do they possess a well-defined
time of emission (or intrinsic age), prior to detection. (As an aside, we note that this
contradicts thle basic assumption of kinetic theory, viz., that particles carry definite physical
properties, such as energy, as wcll as the basic assumption of this conference, viz., that
one can ce:lebrate a birthday at a well-defined time). Our experiment, which is sketched in
the following figure, was first r
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Figure 41. The Franson experiment: The interference of two spatially
separated photons in two Mach-Zehnder interferometers

As in the original EPR paper, a source S emits two particles in opposite directions, but 11"
new feature here is that they enter two identical Mach-Zehnder interferometers, in wi,
they are allowed to take eithp.r a short path or a long path. These interferometers can have
their path length differences adjusted by means of phase shifters inserted into their long
paths.

There is no first-order interference of a single photon wave packet with itself inside
either interferometcr, hecause the width of the wave packet (which is on the order of tens of
femtoseconds in our experiment) is much too small to permit any overlap of the transmitted
and reflected portions of the wave packet at the final beam splitter. However, there is a
second-order (i.e. two-photon) inmerference observable in coincidence detection at detectors
Dl and D2.

Again, we shall use Feyniman's rules for interference to calculate the probability of
coincidence detection. The indistinguishable processes here are (t) the "short-short" and
(2) the "long-long" processes, (where in (1), both photons take the short paths of their
respective interferometers, and in (2) they both take the long paths). The distinguishable
processes are (3) the "short-long" and (4) the "long-short" processes, since th,' "clicks" of
DIl and D2 are not simultaneous in these two 2roccsses. In principle and also in practice,
we are able to rejuct these distinguishable "clicks" by using sufficiently large path length
differences in the two interferometers, and a sufficiently narrow coincidence timing
window in our electronics. We are thus left with the two indistinguishable processes (1)
and (2) only, for which we must first add the probability amplitudes, and then take the
absolute square. Hence the probability of a given coincidence detection is given by the

expression

+ ei01,ei1

where the firs- term inside the absolute value corresponds to the "short-short" process, and
th, second term !o the "long-long" proc.ss. (The beam splitters are assumed to be 50/50
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throughout.) Here the phase ýj (4) represents the total phase difference between the long
and short arms of the left (tight) interferometer. Simplifying this expression, we get

P, - [I + Cos (0I + 0A] .

Note that this implies a fringe visibility of 100% (i.e., perfect zeros at the minima in
coincidence detections). Bell's inequality for this experiment implies (when certain
reasonable auxiliary assumptions are made) that sinusoidal fringes can have at most 70.7%
(=1/2a) visibility.

Our apparatus is sketched in the following figure. In the second figure, we present
our data: 7Z)crystal M 2

ur pump (KDP) Cyl. lens - _

In nlr

""B1

N182 F2

Figure 22. Apparatus used at Berkeley to perform the Franson experiment
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Figure 23. Interference fringes of our Franson experiment
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By analysis of these data, we concluded that Bell's limiting 70.7% visibility is exceeded by
16 standard deviations.

The meaning of the maximum is that the two spatially separated photons always
behave in a correlated fashion at the final beam splitter, i.e., if one is transmitted, then the
other is also transmitted; and if one is reflected, then the other is also reflected. The
meaning of the minimum is that the two photon "twins" always behave in an anticorrelated
fashion at the final splitter, i.e., if one is transmitted, then the other is reflected, and vice
versa. The behav'or of the "twins" depends on the settings which we choose ft r the
space-like separated phase shifters (which we co'ild in principle set even after the ph, tons
had entered their separate interferometers 23). Also, it should be emphasized that the fact
that these interference fringes were observed means that one does not know, even in
principle, the actual age of the "twins" upon their arrival (i.e. detection) for otherwise the
"long-long" and "short-short" processes would become distinguishable, and the
interference pattern would disappear.

As a final remark, other papers at this conference addressed the question of whether
pure quantum states can evolve into mixed states in black hole evaporation. A closely
related question is whether mass is a local, realistic property of a black hole. Let us
consider the following photon pair-creation process arising from ao vacuum fluctuation at
the event horizon of a black hole:

bloak .. event horizon

hole

pair creation
of photons

Figure 24. Photon hair creation at the event horizon of a black hole

The left-going member of the pair falls into the black hole, whereas the right-going member
escapes to infinity. Since energy is conserved in this system, the mass of the black hole is
entangled with that of the photon which escapes to infinity, and the entire system is in an
entangled state. In light of the violation of Bell's inequality in our experiment, it may be
forbidden to ascribe any well-defined mass to the black hole until this right going photon is
detected, i.e., it may be incorrect to think of the mass of the blacjk hole as a local, realistic
quantity until it is observed. Einstein and Bohr had a similar discussion (though not in the
context of black holes) at the 1930 Solvay Conference 24 .
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ABSTRACT

Using multiport beam splitters it will be possible to study Einstein-Podolsky-Rosen
correlations in higher dimensiontal llbert space, As an explicit example we present the
design and theory of a tritter, which is a inultiport beamn splitter with three input ports and
three output ports, such that any amplitude incident at one input port is distributed equally
over the output ports. We will then show the results for a two-photon, two-tritter expezinhent,
wfiere novel Einstein-Podolsky-Roscn correlations occur.

1. Introu iction

All experimental work concerning the F.instein-Podolsky-Rosen Paradoxt and Bell's
theorem2 thus far is restricted to two-particle (in most cases two-photon) entangled states
where the correlations can effectively be described by restricting the analysis to a Hilbert space
of dimension 2 for each particle. These states can be two polarization states as proposed
initially by Bohn 3 and first employed in an experiment by Freedman and Clauscr 4, they can be
two momentum eigenstates as in the experiment proposed by Home and Zeilinger5 and per-
formed first by Rarity and Tapster6 , or, they can be two states which took beam paths of
markedly different length on their way from the source to the detector as proposed by
Franson7 . This latter experiment has now been performed by various groups', the most con-
clusive experiment which showed a striking violation of a Bell-type inequality is due to Kwiat,
Steinberg and Chia'9.

There are two obvious routes fo' generalization. One i3 to considcr more than two
particles, the other is to analyze the case of more than two states available to each particle.
The generalization to more than two particles has led to some new insight into the difference
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between quantum mechanics and local realistic theories'". But, due to the unavailability of
coherent multi-particle sources this has not as yet resulted in an experiment.

In the present paper we would like to focus our analysis on another generalization.
This is the case where each particle has more than two states available, The correlations are
then defined in Hilbert spaces of higher dimension". It is obvious that a possible route to
generalizing EPR correlations to systems of higher dimension would be to investigate spin
correlations between particles with spin-I or higher (with the obvious and notable exception of
the photon or other massless particles which have only 2 polarisation states.) Again, since at
present there exist no sources for correlated particles of higher spin, such investigations based
on spin correlatiozs are purely theoretical to date12.

This paper shows how to obtain such EPR correlations in more than two dimensions in
real experiments. Such nxperiments are based on both the availability of parametric down-
conversion as a source for highly correlated two-photon states' 3 and on the use of multi-port
devices14. Finally, we present some theoretical predictions for the novel correlations expected.

2. The Beam Splitter as a Four-Port Device

The beam splitter is a central element of many experinicnts in quantum optics. A
generrl beam splitter has two input ports and two output ports (Fig. I). Fornmally it may be
described by a unitary operator in a two-'dimensional Hilbert space. We should note here that
tbr the present paper we deliberately adopt an explicit Hilbert space foi'malism because it is
equally well suited for describing a beam splitter operating for any type of particle, be it
electrons, photons, atoms or neutrons, to name just those types of radiation for which quantum
interference experiments with beam splitters have been performed so far.

a a•

b b'

Fig. 1: A general bmn splitter has two input ports and two output ports.

The general beam splitter pure input state is a superposition

ll> V.a Wb> (1)

where. Ja > and Ih > describe a particle in beam a or b (see Fis. 1) respectively. We assume

the normalization V. yf * + Wb Vb = 1. Likewise the general output state is the suoerposition

in">= V/o ia' > + oVut Y a> (2)

in obvious notation. Input and output states may equally wel' be written in matrix notation as
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• ) t '(3)

The general beam splitter operator U then couples y/ to Iv, UV' U~ with (U1U = F.
We restrict ourselves now to 50-50 beam splitters. This means that a particle incident

at any of the two input ports of a symmetric beam splitter has the same probability p = 1/2 to
be found in any of the two output ports. It is well known that such a beam splitter is defined
only up to arbitrary phase factors in the input and output ports"1.

Two possible 50-50 beam splitter operators are for example

where U, represents a time-symmetric beam splitter and U, represents a spatially symmetric
one. The two beam splitters can be converted into each other using ;r phase shifls in one input
and one output port, i.e.

UII = J (0 1 ) (1 0i'()
The two beam splitter operators imply different transition rules for incident beams,

These are

IaL{,Iki,,)+Ibl' Ih) _-, 1{ '>)+ilh'}) fo>r U,. ",)

The first beam splitter implies no phase change upon reflection from one side while reflection
from the other side implies a phase change of x. The second beam splitter operator implies
that both reflected beams acquire a phase shift of 7U2 upon reflection.

We note here that beam splitters are just special cases of 4-port devices. Another
example of a 4-port device would be a Mach-Zehnder interfercmeter.

3. Two-Particle Two-State Systems

Using these rules it is now easily possible to calculate the results of a two-particle two-
state EPR-Bell experiment as shown in Fig. 2 A source emits two particles in the state

I = J ,,"Jel<) +IbbAd)}. (7)
ýr2
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b'>O c c1

Fig. I2 Principle rifa two-parliclc, two-statc EPR-BcI[ cxpcrirncnt using benam splitters.

Here and below the first ket in a product always refers to particle I and the second tU particle
2. Also, e.g., ja)Jc) implies the tensor product Ia) ® c) etc. The beams a, h, c, cd may then be
subject to tile phase shifts a,/3, X, 6 such that the state becomes

Syl= e(4Y J,)e -lb *)) (8)

with x= /1± 6- a- y. Applying now the beam splitter rules (6) and, analogously,

Ie)=: I t c') t d')} d)-= -I- l c')- }d')} (9)

one obtains for tile joint probabilities for two detectors to register the particles in coincidence

p(a'.c') = p(b', d') = Ilcose Q2/2)

2

p(a',d') = p(b',c') -I sin (Z/2). (10)
2

Thus, pertect correlations arise for '

z2l~' 0r.(1)

For odd n detector a' fires in coincidence with detector d' and detector b' fires in
c( incidence with detector c' while for even n the coincidences are a' c' and b' - d'. These
two different types of coincidences are represented in Fig. 3. In other words, for these
parameter settings the pnath taken by a particle after its beam splitter is :n Einstein-Podolsky-
Rosen element of reality, i.e. firing of any one individual detector for one particle allows one to
predict with certainty which detector will register the other particle.

These perfect correlations can be characterized via a value-assignment procedure
introduced by 'tell. The possible results obtained on either side are named A and B, and they
are assigned the values ±1. It then follows that the two cases of perfect correlation are
signified by AB -- +1 and AB - -1 respectively. We call these values Bell numbers. We notice
that one of the beam splitter opt.. ator representations (U,) just contains Bell numbers (+I and
- I for the two dimensional case). It will be seen later that for multiports the generalization of
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Bell's value assignment procedure is quite interesting. Furthermore, in any dimension there are
always multiports whose unitary representation contains only Bell numbers.

A B A B
+1 o - .o -1.1 +1 -1

- 1 -1 +1

A.B -+1 AB = -1

Fig. 3: Possible perfect correlations for the case of an experiment as shown in Fig. 2. The results A, 11 on either
side can be +1 or -1, dcpcnding on which detector in which outgoing beam registers a particle. The
perfect correlations can be signified by either A. B = +1 orA - = -1.

We should mention that the results of this section are basically known. They were
repeated here in order to prepare the reader for the less familiar situations in the following
sections. An experimeitally available source which prepares the two particles in the entangled
state of Eq. (7) is a non-linear crystal where through the process of spontaneous parametric
down-conversion an incident photon may split into 2 photons of lower energy.

4. The Tritter as an r-'nmple of a Multiport Device

In this section w, ,. ,i introduce the general concept of multiports and then we give
some explicit examples. A general multiport has L input ports and M output ports' and is
called N-port (N = M + L) . For simplicity we restrict our considerations to symmetric N-
ports which are defined as having an equal number of input ports and output ports
(L = U = N/2) and, furthermore, which operate such that a single particle incident on any
individual input port has equal probability (i.e. p = I/M -2/N) to be found in any specific
output port. This is the generalization of the generic beam splitter discussed in section 2
above. We propose to call symmetric multiports "Critters" and specifically a critter with
L - M = 3 is called a Tritter, one with L - M - 4 is a Quitter16 etc.

Lossless symmetric multiports (critters) can be represented by unitary operators in an
M-dintncsional Hfilbert space. Again, as was the case for the conventional beam splitter, there
are many physically possible critters, but, as opposed to the beam splitter case, it is not always
possible to transfonn all types of a specific critter (i.e. symmetric N-port with a given N) into
each other by merely supplying external phase shifters or relabelling output ports17.

Let us consider explicitly the tritter. The gcncial input and output states arc (Fig. 4)

Iy) V/Ja')+ Vjb)+ V"je'). (12)

or, in matrix notation,

'In general some physical ports can work both as input and output ports (viz. the Michelson interferometer).
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•'• •b and V/ •w j~iJ and (13)

a al

b b'

C C1

Fig. 4: A generic trittcr is devised with three input ports and three output Ports such that an amplitude incident
on any one of the input port excitcs any of the output ports equally.

Again, a unitary operator couples the output state to the input state,

V = U. (14)

This unitary operator can now be represented by a 3 x 3 matrix where the modulus of each
matrix element is 1/v. Here again and for all critters it is possible to absorb any phase factors
of the first row into phases of the input beams and to absorb any phase factors of the first
column into phases of the output beams. Such a representation of a multiport only contains
"1" in both the first column and the first row. We will call such a representation canonical.
Thus, the general tritter operator can be written as

P* () (15)

with I• = 1 and qp+ 0p* -1. The only two possible choices for qo are (p a and q) = a 2 with

Thus the tritter operator has two canoni( ' representations, either

s a 2  j orI a a] (16)

The transition rules for incident beams therefore are
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1a => t)4 ) + '

1b) =: V1{Ia') + +') ia2 Jc')7

IC) => 7I fa')f*a'Ib')-+- aje}(7

for the tritter rule U,.. For 11. the roles of a and a' are just interchanged. Note also that
U, -= U,. and that the two different types of tritter can be converted into each other by an odd
number of permutations of rows or columns, e.g.

(J. = 0 0 Ur.

0 (18)

These results imply that sequential arrangement of tritters does not lead to new
nontrivial tritters. In other words, given some tritter one can obtain any tritter by changing
external phases and by a permutation of input and/or output ports, which may simply be
achieved for example by flipping two output ports. Physically, there are many dilrerent
possibilities of realising a tritter. A specific type with parallel input beams and parallel output
beams is shown in Fig. 5. One can easily see that a tritter has more adjustable parameters than
a beam splitter. These are the reflectivities of the partially retlecting mirrors and the nontrivial
phase in the internal loop of the tritter.

a b c

Fig. 5. Possible rcalization of a trittcr using partially rctcctingi mirrors and a nontrivial inteinal phase 0 - 0, 71.

Turning to higher multiports the numbcr of experimentally adjustable nontrivial
parameters grows quadratically with the numbei of ports. One o" the most interesting results
tbr higher multiports is the existence of distinct classes which cannot be transformed into each
other by just changing external phases and by permutation ol input and/or output ports. We
leave a detailed discussion to a forthcoming paper.

5. Two-Particle Three-State Systems

It is evident that with multiports a large number of novel experiments in quantum optics
become possible. Because of the availability of down-conversion photon sources, we only
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discuss here the case where a two-particle source is employed. Assume that such a source
emits two particles in the state

I I{a)Id~i b)e) ± J)lf)}• (19)

Again, the first ket in a product sitate refers to particle 1, and the second to particle 2. The
beams a,b,c,d,e,f are subject to the phase shiR.s afl, y, '5, g,, respectively, and thus the
state evolves into

S+ ¢"l1 + efxlIf>} (20)

with Z=3f+v-a 5andV=7+"--a-5,
Supposc now that the three beams excited by particle I are fed into a tritter and

likewise the three beams excited by particle 2 are fed into another tritter (Fig. 6). Clearly thefinal state is then obtained by applying the appropriate tritter operator Eq. (16) t'i state (20).

Instead of writing down the final state explicitly, we focus on the count rates and on the
correlations to be expected.

o'-<'

"TRITTER 8 TRIi'ER A

Fig. 6: Principle oM a two-tritter, two-iphotun EPR experimnit. In a practidal rcafization tic SwouiC can be
paranictric down-coiversion.

The unconditional probability to detect a particle in any of the detectors is a constant,
e.g. p(a') = 1/3. The independence of any of the phases inserted between source and tritters is
a consequence of the initial entanglement. Certainly this does not hold anymore for the various
joint probabilities of detecting a particle in a given detector on one side together with detecting
the other particle on the other side. These joint probabilities are:

.,[�'C') '= 1 I ]
,. e'), ,- -= Pt . + ;---. ,o[ x + 1cos,

27

p(a',e') - p(b',d') ý p(b', f') - 7[3 +2cosZ' - 2cosio' i 2cosWp' -.z')1
27

with ,Z' --XA2a/3, (p'- po-2?r/3

p(a',f') - p(b',e') = p(c',d') -7--13 + 2cosZ" + 2 cos V" + 2 cos( p"- ;")]

with Z" " X- 2 r/3, (p" V 4 2zr/3 (21)
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and where, e.g., p(a',c') is the probability to simultaneously detect a particle in detector
a'and a particle in detector e'.

The joint probabilities of Eqs. (21) have L number of remarkable features. It is easy to
show that all these probabilities are nonnegative and their matximum value is 1/3. This may be
understood by analyzing for example the case where the first equation attains its maximum
value which occurs when , p= 2nnc. Then p(a',d') = p(b',f') = p(c',e') = 1/3 and all other
joint probabilities vanish. This implies that if the phases in the two-tritter two-particle inter-
ferometer are set to these values then perfect correlations arise, and thus Einstein-Podolsky-
R6sen elements of reality may be introduced, Explicitly, if, say, detector a' fires and the
phases are set to the parameters just mentioned we can predict with certainty that the other
particle will be registered by detector d'. Likewise, if particle I is registered by detector
b'(c'), particle 2 will be registered by detector f'(e'). Thus, while it is always maximally
uncertain which detector will register either of the particles, it is known with certainty which
detector will register the second particle once the first particle has been observed, as long as
the phases are set according to the above condition.

Another set of similar perfect correlations arises if the phases are set such that
2nxr. Then the joint probabilities are p(a',e') = p(b',d') = p(e',f') = 1/3 with all

otlhers being zero. Here again perfect correlations occur but now between different detectors
than before. Finally, a third set of perfect correlations arises for X", Vn" --2nr, then
p(a',f') = p(b',e') = p(c',d') = 1/3 with all other joint probabilities vanishing. Fig. 7 shows
these three possible ways of perfect correlations. Note that of the six possible one-to-one
combinations between detecors on either side only three combinations are realized for perfect
correlations. Here we should note the fact that these types of perfect correlations arise
whenever we use the same tritter on each side (either the one represented by U, or the one
represented by U' ). In case we chose to use diff'erent types of tritters on thu two sides, the
other three types of perfect correlations occur, with the original three now being excluded.

A B A B A B
ao-- --- o a (I Of o ao

CL
2  

Q 2 u 2 d or- -aa

1 1 o o

A.B=a 2  A'Be A.B=+1

Fig. 7: Perfect correlations occurring in an experiment of the type of Fig. 6. The results on either side are beat
characterized by assigning thcmn the value A,B = a, a2 , 1, where (X a e2 hd/3. The three (=ass of perfect
correlations occurring arc then signified by A. 13 B x, a 2 , I.

The three types of perfect three-state correlations may be signified in the same way by
value assignment as it was done originally by Bell for two-state correlations. One might be
tempted to assign the values +1,0,-I to the three possible outcomes on each side. Such a
procedure does not succeed because, when calculating the product AB, if A is again the result
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for one particle and B the result for the other, appearance of a "0"-result always leads to
AB = 0 independent of which type of correlation occurs and thus information is lost. A rather
elegant procedure of value assignment is to choose a, ct2 , at' (with a = e2") for the three
possible outcomes on either side. It then follows that the three cases of perfect correlations are
signified by AB = a, a2, I (see Fig. 7). These numbers are now the Bell numbers for a three-
dimensional Hilbert space.

In general, for the case of correlations between two particles, where each one is defined
in an M-ditnensional Hilbert space, at most M cases of perfect correlations (where EPR-
elements of reality v, he introduced) occur with a given set of inultiports. It is thus natural
to generalize the procedure just given by assigning the values A,B = e"'m n = 1,2,... M to
the results in order to signify the cases of perfect correlations by AB = e"". As we will
show in a forthcoming paper there is always at least one case of a specific multiport for any M
where this procedure succeeds, But, we should point out, for M)3 these are also cases where
this procedure fails. Obviously the case M= 2 as analyzed originally by BtII is just the most
simple nontrivial case. This is the reasn why we propose to call these general numbers used
in value assignment Bell-nunbers.

Concluding this section we note that besides introducing EPR elements of reality the
way just given, one can also apply a generalized Bell inequality to the two-tritter correlationsi"
thus providing the first feasible test for Bell's theorem for pairs of spins higher than 1/2 via an
optical analog.

6. Concluding Comments

In general, an experiment using multiports which are fed the two correlated photons
created in the process of parametric down-conversion provides a generalization of EPR
correlations to Hilbert spaces of higher dimensions. These correlations are fully analogous to
those between two particles with higher spin. Thus they are expected to give new interesting
results going beyond those realizable in spin correlations between two spin-l/2 particles or two
photons. A specific example are those correlations which are necessary to establish the Bell-
Kochen-Specker paradox's. Using two correlated particles each defined in a higher-
dimensional Hilbert space it is possible to establish the results for each individual measurement
utilized in the Kochen-Specker argument as Einstein-Podolsky-Rosen elements of reality2O. It
is evident that using multiports together with a down-conversion photoi. source can provide
immediate experimental realization of such correlations.

This work was supported by the Austrian Science Foundation FWF, project No. S6502
(Schwerpunkt Qtantenoptik), and the US National Science Foundation, grant No. PHY92-
13964.
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TIME AS A DERIVED QUANTITY IN THE MICROMASER

MARLAN 0. SCULLY
Texas A&M University, Department of Physics

College Station, Texas 77843

ABSTRACT
Aspects of the radiation-matter interaction in a cavity are re-

viewed. It is found that the concept of time appears as a natural
result of phase shifts experienced due to the atom-field interac-

tion.

Yakir Aharonov's contributions to, and love for, physics is an inspiration to us
all. It is a pleasure, and an honor, to contribute this nete to his Festschrift.

One of the cleanest and most interesting experiments in modern quantum op-
tics involve resonant atoms pawing through a high Q microwave cavity, i.e. the
micromaaer.' The 'usual" treatment of the problem, in the notation of Fig. 1,
assigns a time-of-flight r = t/v to the atom-field interaction. In such a case, the
Rabi oscillation between upper level and lower level, beginning with n photons in
the cavity and an excited atom, i.e. beginning with I0(O)) = Ia,n), is described by

0(r) = coegrv4 •+-Ila, n) - iaingrVr + jb, n + 1) (1)

where we have assumed resonance belween the atom and field, and g is the atom-
field coupling constant.

Now there are several questions couicerning Eq. (1), for example: What kind
of center of mass wave function do we choose to yield the best approcimation to
Eq. (1)? Perhaps a "sharp" packet like 6(z - vt) rio that the entrance and exit times
are well defined, or perhaps a momentum state exp ipx so that the velocity is well
defined, or perhaps some kind of Gaussian, minimum uncertainty, wave packet.

In order to address these, and other related points, we5 were motivated to
reconsider the simple problem of a plane wave center of mass wave function incident
from the left as in Fig. 1

W =. (t) exp ipx a, n), (2)

276



277

q'•(x) micromaser cavity

Sb b

center of mass wave function

Fig. 1. Excited atom passes through cavity emerging in ground state.

interacting with a resonant cavity for which the Hamiltonian in

H = f- + g(z)[au" +•oat], (3)
2m

where P is t he c.m. momentum operator for atom@ of mass m, g(z) is the atom-field

coupling constant which inside the cavity has a value g and vanishes outside, a, at

are the annihilation and creation operators and o,al are the atomic lowering and

raising operators.
Now the operator

a + a,(4)

has eigenstatm
[a,= +[lo,,) ÷ Ib,,n + 1)], ()

such that

•., = ±V• + kl*,4 ) (6)
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Therefore the Hamilton acting on states

exp ip X ,,(7)

yields tMo following energies:
P2

- < 0, (8a)
2rn

-gvf-.+ 1 0 < z < 1, (8b)
2r2

p2 - X > l,(8c)
2m

and, therelore, by conservation of energy

Sm - .,, ±g¾T- +i. (o)

2rn 2rn n

which implies

P.= [P2T g• ,•• (10)

and since the interaction energy is small compared to P2 /2rn

P. ý- P =I= g v--+ -1/(Pl) 1

Thus, for an excited state atom at x = 0, we have

T 1(0) =a, n) + 112-(o = ',n II ll+,-) + -i-.-)j, (12)

and at x =t this becomes

1+'1(1) = 1 [•-i"+"aI[•÷.,> +e•-'"-."-.,,} ]
Cie
V2e-' [e'(+ /) h+,) + e-CV -/lP/m) ,. (13)

hence, if we rewrite this back in terms of la, n), lb, n + 1) states have

e-is t Cosgvn +1 + a,1n),

(/isinrn/n + lý-p )lb, n + 1) (14)

This simple result has several interesting features, to wit:
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i) The "correct" or "beat" c.m. wave packet, in the sense of the question asked
earlier, is a plane wave.

2) The atom should be thought of as being "spread" over the whole wave packet

but is "somewhere" we just don't knov.' where. That is, the c.m. wave packet may
be many centimeters in extent but the atom is only a few angstroms in size. This
result speaks to the proper interpretation of the wave packet in quantum mechanics.
The relevance to the present problem is that we don't know when the atom enters
the cavity, but when it does it acts like a point particle passing through in a "time"

tl(P/r).

3) Time here can be argued as being a derived quantity. We never introduce the

concept of velocity. v. and therefore the increment dt, but only the boost operator
involving canonical momentum p. That is, we may think of our particle falling
through a potential difference or being given an impulse so as to create the c.m.
state e'Pl. Then the result (14) is obtained, which is to be compared with Eq. (1).
The latter is, or course, derived from the time dependent Schr6dinger equation.

4) The process of "photon emission" in the cavity as described by Eq. (14)
involves well defined phase shifts (like exp(igv/W'--It/(P/m)) which are just suffi-
cient to ensure Rabi transitions. Note further that the vacuum Rabi angle gr can
be, and routinely is, 7r/2 in the experiments of Ref. 1.

5) This provides a natural basis for a which-path 3' detector.

6) The basis for enforcing complementarity, in the work of Refs. 3 and 4, is
qualitatively different from the "randomization of phase" arguments made by Bohr

in the classic Bohr-Einstein debate and by Furry and Ramsey in their discussion of
the Aharonov Bohm effect.
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I'm afraid that I'm one of the people whose primary goal is

expressed by the Danish poet, Piet Hein, in his boc'ý of poems that he

calls "Grooks":
"I'd like to know

What this show

Is all about

Before it's out."

And always in mind is that big question, "How come such a strange

thir,' as existence?" ,•ncd "How come the quantum?" And, in

connection with the quantum, "How do we get the impression that

there is one world out of the records of many observer-

participators.?" If these questions verge on philosophy, then perhaps

we can adopt as motto, "Philosophy is too important to be left to the

philosophers." Among the philosophers, we have today two great

281
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schools--the Anglo-American and the Continental school. Heidegger,

representative of the Continental school, in one of his books takes

as central theme a passage from the German poet, Stefan George,

"Without the word, no thing may be."

We have something a little like that in quantum theory. We

know the photon does ot exist in the atom before the act of

emission and we kno%'a the photon does not exist in the detector

after the act of detection. And we know that the passage of the

photon from the atom to the detector is simply talk. So there is the

great question: what is the role of the observer-participator in

bringing about that which appears to be happening? Eugene Wigner at

one time thought that consciousness was the key point, but I think

that there were enough objections to that proposition from Ihim and

from others that he's given it up. We focus nowadays not on

consciousness but on the act of detection or, better, what Niels Bohr

describes as "an elementary quantum phenomenon... brought to a

close by an irreversible act of amplification." The key point to my

mind is expressed in the theme of "It from Bit.' That is:

Every "It", every particle, every field of force -- even the
spacetime continuum itself -- derives its way of action, its
very existence entirely, even if in some context indirectly,
from the detector-elicited answers to yes or no questions,
binary choices, bits.

In another way of wording the idea which I put up for examination,

all things physical, all its, must in the end submit to an

information-theoretic description.
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The original Aharanov-Bohm experiment1 (Fig. 1) illustrates

this theme.

Figure 1. Idealized version of Aharonov-Bohm experiment. Point

source of monoenergetic electrons. Electron waves emerge through

the two slits in the diaphragm. They respond to the magnetic

potential associated with the flux of magnetic lines of force that

run throug;h the circular region embraced between but not touched

by the two electron partial waves. The interference pattern at the

right undergoes a shift which, expressed in count of fringes,

measures directly the magnetic flux in appropriate Planck units.

Text continues:

Electrons emerge from the localized source at the left. Some

pi netrate the double slit arrangement that divides the diagram. At

the right, a flux of magnetic lines of force runs perpendicular to the

",lane of the figure. They are embraced by the two branches of the

electron beam but do not touch either one. Yet, as we kno-i from

quantum mechanics, tho equations recognize that ihe momentum is

the sum of the kinetic momentum (proportionai to electron wave

number) and a potential momentum. The potential momentum is
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connected with the magnetic vector potential. The vector potential

integrated around this circuit gives the amount of magnetic flux

embraced by the circuit. What's more, the difference in wave

number between below and above results in a shift of the

interference fringes:

(Phase change around perimeter of the included area)

21( x (number of fringes shift of interference pattern)

- (electron charge) x (magnetic flux embraced) /hc.

We end up with the "bit" tally of fringe shift giving us directly the

desired "it," the magnetic flux.

Another example of "it from bit" shows itself in quite another

domain, the field of black-hole physics. Roger Penrose taught us

about this marvelous process of interaction between an incoming

object and a black-hole in which the two trade energy and angular

momentum. 2 Demitrios Christodoulou, 19-year old graduate student

who had never finished high school, got to work on analyzing these

Penrose exchange processes. Yes, with their help, one can raise or

lower the energy of a black hole and its angular momentum. But a

certain combination of these two quantities, he found, can be raised,

but never reduced. 3 (Figure. 2).
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C

I-

-(Angular mromcntum of black hole)2  -

Figure 2. TRANSFORMATIONS:

Reversible ---> ; Irreversible--->

In a reversible transformation, the black hole stays on the

Christodoulou line. An irreversible transformation takes the black

hole off the line.

Text:

This combination is like entropy. Another graduate student, Jacob

Bekenstein, came along and pointed out that this quantity not only is

analogous to entropy, it must be entropy. 4

I can recall confessing to Bekenstein how bad my conscience

has always been in putting a hot teacup next to a cold one. Although

energy is conserved in the exchange of heat between the two, that

process increases the entropy of the world in an irreversible way

that echoes unforgivingly down the corridors of time, forever. *But,"

I said to Jacob, "if a black-hole comes by, why can't I drop both

teacups in and hide the evidence of my crime?" BeKenstein, however,

is a man of great integrity. This proposed escape did not appeal to
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him. He came back a few months later with the conclusion that the

black hole itself has entropy. How much entropy allows itself to be

deduced out of the results of Christodoulou.

Well, we've all heard the lovely story about Brandon Carter

bringing Bekenstein's paper to the attention of Stephen Hawking and

the two of them deciding it was so preposterous they would write a

paper to prove it was wrong. Then, in the course of the work,

Stephen Hawking 5 finally found the formula for the emission of

radiation by a black hole, and concluded the blac!., hole does have

temperature and the black hole does have entropy.

Then, going further in this domain, Kip Thorne and Wojciech

Zurek analyzed a typical process in which particles and radiation

fall into a black holu, and showed that the amount of information

lost corresponds exactly to the increase in area measured in

Bekenstein-Planck units. 6 So I sketched out a picture of the kind I

wanted for a recent Scientific American Library book (Figure 3).

-r
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Figure 3. A totally symbolic representation of the Bekenstein-

Hawking "Bit number" of a black hole. This number

counts the number of boxes of Bekenstein size that can

be pasted down (in imagination onlyl) on the horizon of

the black hole. Each box contains one bit, one yes-or-no

binary digit of information, about what went in to make

that black hole.

Text:

It delighted me so to hear how the two draftsmen created the

picture. One of them drew the sphere and made these little boxes.

The other threw coins, and, depending whether a head or a tail came

up, put down a zero or a one.The enormous binary number one gets

this way, with an enormous number of digits, does not describe the

information but it measures how many bits of information.

It helps to think of the relevant information about what fell in

as inscribed in a gigantic ielephone book. Each page of the telephone

book describes the energies of the photons and electrons and other

entities that disappeared into the black hole in the act depicted. The

pages in this telephone book we number in binary digits. The bit

number of a black hole is only the number of the page in the

telephone book, it's not a description of the information. The

information needed is enormously more than this. So the black hole

provides another example of the theme "it from bit."

Quantum theoy and general relativity come together in many

ways. The task that has long been on the books is so-called

quantization of general relativity. But that phraseology of the task
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is misleading because it suggests that we ought to quantize

spacetime. After all, isn't spacetime the overarching theme of

general relativity? Actually, if there was anything that misled us

all and prolonged the task more than anything else, it was reading

and thinking that spacetime is the dynamic object. The dynamic

)bject, however, is not spacetime. It is three-dimensional space

geometry, and spacetime is the history of that geometry, or at least

it's the classical history of space evolving in time. I like to

consider a picture like Figure 4.

Figure 4.* Space, spac3time, and superspace Upprr left: Five samph-

configurations, A, B, C, D, E. attained by space ir, th, course of its

expansion and recontraction. Blelow: Supe;rspa( i and th ,se five

.ample confiqurations, each represented bý i pi.nt in superspace

tippe, right: Spac,;time. A spacelike cut, like A th !jgh spacetime

ves a momentary configuration of space Ther,; i• i1o i;oripulsion to

limit attention to a one-parameter fariily of slices, A, B, C, 0, t

thi ugh spacetime. The phrase "mrany-fingeidd tini," is .io
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telling one not to so limit one's slices, and B' is an example of this

freedom in action. The 3-geometries B'and A, B, C, D, E, like all 3-

geometries obtained by all spacelike slices whatsoeve." through the

given classical spacetime, lie on a single bent leaf of history,

indicated in the diagram, and cutting its thin slice through

superspace. A different spacetime, in other words, a different

solution of Einstein's field equation, means a different leaf of

history (not indicated) slicing through superspace. *From Charles W.

Misner, Kip S. Thorne, and John A. Wheeler. Graviain, W. H.

Freeman & Co., New York, 1973, p. 1183.

Text:

At the upper right is spacetime, like an egg. A slice through that

four-dimensional spacetime gives us 3-dimensional space. Thus A

or B or B', etc. constitute a sequence of ,pacelike slices through

spacetime. The two hazy curved lines symbolically depict two

masses which interact and bend space in their vicinity but don't

collide, and ultimately fly apart.

Quantum theory of spacetime leads us to think of a probability

amplitude, not of a y(x) as we do in the Schr6dinger equation for a

particle with one degree of freedom, but TP((3 )G) as a functional of a.

3-dimensional geometry: One probability amplitude for this 3-

dimensional geometry, one for another and so on. Classical theory

gives us a deterministic leaf of history, cutting through the space of

all three geometries.
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Quantum considerations teach us to speak of superspace.

Superspace is an infinite dimensional manifold, each point which

represents all the properties of a 3-dimensional geometry. So the

3-dimensional geometry, A, with all its lumps, bumps and wiggles,

is symbolized by the point A in superspace and 3-geometry B is

symbolized by another point. A different view of the same history, a

different slice through spacetime, a slice that runs in another

direction, let me call it B', is symbolized by another point in

superspace. One is as good as another. No canonical choice.

But, there's one thing wrong with this classical pictura: it

gives us a deterministic leaf of history, sharply defined. Classically

a certain 3-dimensional geometry is briefly realized or it isn't.

Quantum mechanically, however, we know there is no such sharp yes

or no distinction between 3-geometries. Instead, there's a 3-

geometry-dependent classical probability amplitude that fall, off

sharply from this leaf of history that cuts through superspace. So

the task of general relativity -- and it took a long time to recognize

even what the task was in these terms -- was to find an equation

for 'T ((3 )G) and the equation can be written down 7 and made to look

simple:

V2V/ +. (3) RV = 0
(6 (3)G 3)

in abb.ov,,ted form, or properly spelled out: 8

(Gijkl + •1=0)) [(3)G]=6"Yij 670k
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where:

G(R -= -Y "2(Tik-j1+7flTk-Yij-Yk)

But to solve it directly has proved so far to be beyond our power.

Fortunately, Ashtekar 9 , Smolin, Jacobson and Rovulli10 and

colleagues in a group of papers, more than 190 of them so far, 11

have given us a totally different way of dealing with the quantum

theory which is closer to the "it from bit" point of view. One sees

what it deals with most easily by going back to electromagnetism.

There the simplest quantity to start with is the vector potential

whose curl gives the magnetic field but whose integral around a

circuit gives us, as in the Aharonov-Bohm experiment, the flux of

magnetic field through the area embraced by that circuit. So one

operation on the vector potential is differentiation and the other is

integration around a closed circuit. 9 ,1 2

Ashtekar, Smolin, Jacobson and Rovelli deal with a similar

contrast between the usual differentiation of the connection in

geometry that lives the curvature tensors on the one hand and

integration atount: a circuit that gives a loop variable on the other

hand and they come out with the conclu 'on that the probability

amplitude in typical cases can be taken to depend only on the knot

class of the loop.

It's enchanting to have a knot 13 come into the story because as

we know, we can have knots in three dimensions, but not in four and

not in two. So, it makes us a little more comfortable that we're

right on the number of dimensions that we sGo around us.
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So much for the formalism. But where does the concept of "it

from bit" appear more directly in the work of Ashtekar, Rovelli and

Smolin? It must be possible to express spacetime curvature by

something that is analogoLls to the way we can get magnetic flux by

a bit-like or fringe-count-measured integral around a circuit. And

we can, so Jeeva Anandan teaches us. 12 Do an experiment where an

uncharged particle -- preferably one with spin -- does for a loop in

curved spacetime what the electron does in the Aharonov-Bohm

experiment in a region where there is a magnetic field Count the

shift of fringes and divide by the area encompassed between the two

branches of the particle beam. In that way get the relevant

component of the curvature tensor. 1 4 Repeat for three independent

orientations. In this way we get the three components that define

the relevant part of the Einstein curvature tensor.

Translate questions about physics into the counting of fringe

shifts as a way to gain new insight, yes; that is the theme of "it

from bit" ir, action. it leaves many old and unanswered questions

still unanswered, but at least offers something closer to a

formalism by which we someday might answer them: Does time

necessarily end? Is the system necessarily closed in space, too? On

the small scale, we know there must exist quantum fluctuations in

the geometry. Are those fluctuations strong enough to give space

everywhere, as I have argued, 7 a foam-like structure?

In a recent paper, Ashtekar, Rovelli and Smolin have made a

further advance. They ask and answer a question. Thay 8sk, "What

surts of questions should we ask in order to get something that has

a "bit"-Iike answer. They say if we have a loop that goes through
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we get the contribution of a Planck area, an area that is the square,

-M G/c3, of the Planck length of 1899.

When I heard about Planck's 94 year-old paper, I was so

fascinated by it, I looked it up. How come he could derive such a

length so early before he or anyone had even the beginnings of

quantum theory? The answer turned out to be motivation. He had set

out early in life animated by the idea that so simple a feature of

nature as black body rat~iation was surely a guide to something

fundamental. He recognized then in the law of displacement of color

of peak radiation with tempei ture something independent of all

details of the structure of atoms and solids. Out of the constant in

the displacement law he got a quantity which is essentially what

subsequently came to be called later the Planck constant. Out of the

Planck constant and the speed of light and the gravitational

constant, he went on to show, one could form a complete set of

units: space, time, mass, temperature and energy. And he urges that

these quantities should serve for natural units in communications

between people who live on different planets to break away from our

own parochial Earth-based units. After all, we who live on this

planet use a unit of time based on the turning of our own particular

planet; a unit of mass based on the particular fluid we drink; and a

unit of length based on the distance from Earth's equator to Earth's

pole. In contrast, the Planck units are universal. I found it easy and

attractive in 1954 to take Planick's paper and translate his general

ideas into modern terminology and to give his units a name, the

"Planck units," which he, of course, did not7. Ashtekar, Rovelli and
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Smolin in an April 1993 preprint show that a loop drawn through

space contributes to a certain integral one-Planck unit of area for

any surface it intersects. Thanks to their work we have not only a

working formalism but we have some rnew and interesting questions.

At the end of all mathematics, we come back to the question:

How come there is any such thing as the quantum? And how much

attention should we pay to someone like Heidegger who prior to the

days of the quantum was so taken with the slogan of Stephan George,

"~Without the word, no thing may be."

I like to cite the game of Twenty Questions in its surprise

version as suggestive. You come in the door and you start asking

your questions. You know you only have twenty. Is it animal? "No."

Is it vegetable? "No." Mineral? "Yes." Is it green? "No." Is it white?

"Yes." You notice that the more questions you ask, the harder it is for

your friends to answer them. The y have to think and think and think.

And finally, as the twenty questions are running out, you have to

make up your mind to a definite word: Is it "cloud?" Your friend

thinks and thinks anid thinks arid finally he says, "Yes." And

everybody bursts out laughing and they explain that when you went

out of the room they had agreed not to agree on a word. There was no

word in the room when you came in. Everyone asked could answer

your question as he wished, but with one small proviso. If you

challenged and he couldn't provide a word compatible with his own

answer and with all previous answers, he lost and you won. So it

was just as difficult for everyone as it was for me. Thi- game of

Twenty Questions has a little of the flavor of the quantum theory of

the electron in the atom. The electron, we sometimes think, has a
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position and a momentum in the atom, but no; not until we've made a

measurement. We have to make up our mind what we're going to ask,

but we can't ask both questions at once. Thus, the insertion of

equipment to determine the one quantity automatically prevents us

from installing and using such apparatus as would determine the

other quantity.

So here we are at the end, and I'm still as puzzled as I was

when I began with the questions, "How come existence? How come

the quantum? " I don't know any more central question in all of

physics than "How come the quantum?"
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ABSTRACT

After sonie general comments about statistics and the TCP theorem, I discuss
experimental searches for violations of the exclusion principle and theories which
allow for such violations.

1. Introduction

It is a great pleasure to speak at this symposium honoring Yakir Aharonov.
Because of the broad range of Yakir's interests, I have been able to see people who
work in different areas than mine whom I don't usually see at conferences and to
meet for the first time people whose names and work I know, but whom I had never
had the opportunity to meet. Yakir is especially concerned with fundamiental issues
which have lasting interest, such as particle statistics. In the first part of my talk I
will say some things about statistics and related issues which may not be generally
known, and in the second part I will focus on how well we know that particles obey
the statistics we think they obey and on theories which allow violations of statistics.

By way of introduction, I mention two relations involving spin which are
on quite different footings. The relation between spin and isospin, that integer-
-pin particles have integer isospin and odd-half-integer-spin particles have odd-half-

A_.Zeger isospin, was suggested on the. basis of few examples: the proton and neutron,
which are in the odd-half-integer category and the three pions, which are in the
integer category. Further, there was no fundamental basis for such a relation. When
strange particles were discovered, this relation was found to be violated by the kaons,
which have zero spin and isospin one-half, and by the lambda and sigma hyperons,
which have spin one-half and integer isospin. Since there was no theory supporting
this relation, it was easy to discard it. By contrast, the relation between spin
and statistics first stated by Pauli' in 1936, that integer-spin particles obey Bose
statistics and odd-half-integer-spin particles obey Fernmi statistics was supported

WTklb pr~s*,ttd by O.W. Greenherg
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by many examples and, at least for free fields, was proved by Pauli from the basic
requirement of local commutativity of observables. This relation has survived and
is one of the most general results of quantum field theory.

2. General Comments about Statistics and Related Issues

2.1 Additivity of the Energy of Widely Separated Subsystems

The zeroth condition I discuss is the requirement that the energy of widely
separated subsystems be additive. This requires that all terms in the Hamniltonian
be "effective Bose opeiators" in that sense that

O•(x¢Y)l - - 0, ix - yl - 00. (1)

For example, 7( can't hase a term such as 0(r)o(x), where 0 is Bose and 0 is Fermi,
because then the contributions to the energy of widely separated subsystems would
alternate in aiga. Such terms are also prohibited by rotational symmetry.

2.2 Statitics of Bound States is Determined by Statistics of Constituents
The well-known rule that a bound state of any number of Bosons and an

even number of Fermions is a Boson, while a bound state with an odd number of
Fermions is a Fermion, was first stated by Wigner,2 who published in Hungarian and
suffered the consequence of using a relatively inaccessible language. Later Ebrenfest
and Oppenheimer* independently published this result in English.

2.3 Spin-Statistics Theorem
I distinguish between two theorems. The physical spin-statistics theorem is

the theorem of Pauli mentioned above, local commutativity of observables requires
that, given the choice between Bose and Fermi statistics, integer-spin particles must
obey Bose statistics and odd-half-integer-spin particles must obey Fermi statistics.
The phrase, given the choice between, is necessary, because the analogous connec-
tion holds between parabose or parafernui statistics and spin. The theorem which
I prefer to call the spin-type-of-locality theorem, due to Burgoyne, 4 states that
fields which commute at spacelike separation must have integer spin and fields that
anticommute at spacelike separation must have odd-half-integer spin. Both the
assumptions and the conclusions of the two theorems differ. The Pauli theorem ex-
plicitly assumes a choice between different types of particle statistics and concludes
that if the wrong choice is made, tien observables fail to commute at spacelike sep-
aration. For example, if one chooses Bole statistics for spin-one-half particles, i.e.,
uses Bose commutation relations for the annihilation and creation operators of the
spin-one-half particles, then the commutator of the observables for the free theory
will contain the S(')(2 - y) singular function, which does not vanish for spacelike
x - y, rather than the S(z - y) singular function which does, The theory (at least
for the free case) still exists. The Burgoyne theorem makes no statement about
particle statistics; rather it assumes a choice o6rLwftn field com. utation r!... es. if
the wrong choice is made, then the fields are identically zero, so the theory does not
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even ey A. This latter theorem has a very general proof in the context of axiomatic
field theory; however it says nothing about particle statistics.

2.4 Weakness of the TCP Theorem

In contrast to the spin-statistics theorem, which requires locality of observ-
ables, the TCP theorem holds regardless of locality, and is a much weaker theorem.
Indeed, it is difficult to make a theory which violates TCP. This is clearly illustrated
by Jost's example.' Jost shows that a free neutral scalar field whose annihilation
and creation operators are quantized with anticommutation relations (and whose
particles thus obey Fermi statistics) still obeys the normal TCP theorem. Cluster
decomposition properties also hold regardless of the choice of commutation rela-
tions.

3. Search for Small Violations of Fermi and Bose Statisti--

Now I come to the second part of my tark and discuss how to detect viola-
tions of Fermi or Bose statistics if they occur. Aomic spectroscopy is the first place
to search for violations of the exclusion principle since that is where Pauli disccv-
ered it. One looks for funny lines which do not correspond to lines in the normal
theory of atomic spectra. There are such lines, for example in the solar spectrum;
howeve- ýiiey probably can be accounted for in terms of highly ionized atoms in an
environment of high pressure, high density and large magnetic fields. Laboratory
spectra are well accounted for by theory and can bound the violation of the exclu-
sion principle for electrons by something like 1 6 to i0-. A useful quantitative
measure of the violation, V, is that V is the coefficient of the anomalous component
of the two-particle density matrix; for fermions, the two-electron density matrix, P2,
is

P2= (-V)p. +Vp,, (2)

where P.) is the antisymmetric (symmetric) two-fermion density matrix. Thoma
and Nolte,6 in a contribution to a poster session here, discuss bounds on the violation
of the exclusion principle for nucleons based on the absence of the nucleus 'Li.
Bounds rlso follow from the absence of 'He. Mohapatra and I surveyed a variety of
searches for violations of narticle statistics in f.

1 will discuss an insightful experiment by Maurice and Trudy Goldhabera
which was designed to answer the question, "Are the electrons emitted mn nuclear
jo-decay quantum mechanically identical to the electrons in atoms?" We know that
the 0-decay electrons have the same spin, charge and mass as electrons in atoms;
however the Goldhabers realized that if the 3-decay electrons were not quantum
mechanically identical to those in atoms, then the p-decay electrons would not see
the K shell of a heavy atom as filled and would fall into the K shell and emit an x-ray.
The Goldhabers looked for such x-rays by letting 13-decay electrons from a natural
source fall on a block of lead. No such x-rays were found. The Goldhabers were able
to confirm that. electrons from the two sources are indeed quantum mechanically
identical. At the same time, they found that any violation of the exclusion principle

a m . _ 1
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for electrons must be less than 5%.
Ramberg and Snow' developed this experiment into one which yields a high-

precision bound on violations of the exclusion principle. Their idea was to replace
the natural 0 source, which provides relatively few electrons, by an electric cur-
rent, in which case Avogadro's number is on our side. The possible violation of
the exclusion principle is that a given collection of electrons can, with different
probabilities, be in different permutation symmetry states. The probability to be
in the "normal" totally antisymmetric state would presumably be close to one, the
next largest probability would occur foi the state with its Young tableau having
one row with two boxes, etc. The idea of the experiment is that each collection
of electrons has a possibility of being in an "abnormal" perinutation state. If the
density matrix for a conduction electron together with the electrons in an atom has
a projection onto such an "abnormal" state, then the conduction electron will not
see the K shell of that atom as filled. Then a transition into the K shell with x-ray
emission iy allowed. Each conduction electron which comes sufficiently close to a
given atom has an independent chance to make such an x-ray-emitting transition,
and thus the probability of seeing such an x-ray is proportional to the number of
conduction electrons which traverse the sample and the number of atoms which the
electrons visit, as well as the probability that a collection of electrons can be in
the anomalous state. Ramberg and Snow chose to run 30 amperes through a thin
copper strip for about a month. They estimated the energy of the x-rays which
would be emitted due to the transition to the K shell. No excess of x-rays above
background was found in this energy region. Ramberg and Snow set the limit

V < 1.7 x IV0". (3)

This is high precision, indeed!

4. Theories of Violation of Statistics

4.1 Gentile's Itermediate Statistics
The first attempt to go beyond Bose and Fermi statistics seems to have b, Cn

made by G. Gentile'0 who suggested an "intermediate statistics" in which at mlost
n identical particles could occupy a given quantum state. In intermediate statistics,
Fermi statistics is recovered for , = 1 and Bose statistics is recovered for n -- 00; thus
intermediate statistics interpolates between Fermi and Bose statistics. However,
Gentile's statistics is not a proper quantum statistics, because the condition of
having at most n particles in a given quantum state is not invariant under change
of basis. For example, for intermediate statistics with a = 2, the state It) 1k, k, k)
does not exist; however, the state 1%) = Ui,,. U,,,,, Uh,,, i1t, 12, is), obtain LI from
I¢') by the unitary change of single-particle basis, Ik)' = T, Uk,.l) does exist.

By contrast, parafermi statistics of order n is invariant under change of
basis," Parafermi statistics of order n not only allows at most n identical parti-
cles in the same state, but 4dso allows at most ,n identical particles in a symmetric
state. In the example just described, neither I1) nor Ix) exist for parafernmi statidtics
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of ordec two.

4.2 Green's Parastatiatics

H.S. Green'2 proposed the first proper quantum statistical generalization
of Bose and Fermi statistics. Green noticed that the commutator of the number
opera4 -r with the annihilation and creation operators is the same for both bosons
and feionions

[,,,, - = s,,al. (4)

The number operator can be written

nk = (1/2)lal, acj] + const, (5)

where the anticommuta rp (commutator) is for the Bose (Fermi) case. If these
expressions are inserted in the number operator-creation operator conunutation re-
lation, the resulting relation is trilinear in the annihilation and creation operators.
Polarizing the number operator to get the transition operator n;z which annihi-
lates a free particle in state k and creates one in state I leads to Green's trilinear
commutation relation for his parabose and parafermi statistics,

[[at, aj]±, all - 26_,a. (6)

Since these rules are trilinear, the usual vacuum condition,

ahlo) = 0, (7)

does not suffice to allow calculation of matrix elements of the a's and at's; a condition
on one-particle states must, be added,

ak04t10) = 6k jlO). (8)

Green found an infinite set of solutions of his commutation rules, one for
each integer, by giving an ansatz which he expressed in terms of Bose and Fermi
operato;s. Let

,, =, = Eb 0),(9)
p=1 p1I

and let the b(,) and b0"' be Bose (Fermi) operators for a = $ but anticommute
(commute) for a j 3 for the "parabose" ("parafermi") cases. This ansatz clearly
satisfies Green's relation, The integer p is the order of the parastatistics. The
physical interpretation of p is that, for parabosons, p is the maximum number of
particles that can occupy an antisymmetric state, while for parafernmions, p is the
maximum number of particles that can occupy a symmetric state (in particular, the
maximum number which can occupy the same state). The case p = I corresponds
to the usual Bose or Fermi statistics. Later, Messiah and [I" proved that Green's
ansatz gives all Pock-like solutions of Green's comnutation rules. Local observables
have a form analogous to the usual ones; for example, the local current for a spin-l/2
theory is j, Z (1/2)[((x), 10(m)]_ From Green's ansatz, it is clear that the squares of
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all norms of states are positive, since sums of Bose or Fermi operators give positive
norms. Thus parastatistics gives a set of orthodox theories. Psrastatistics is one
of the possibilities found by Doplicher, Haag and Roberts' in a general study of
particle statistics using algebraic field theory methods. A good review of this work
is in Haag's recent book".

This is all well and good; however, the violations of statistics provided by
parastatistics are gross. Parafermi statistics of order 2 has up to 2 particles in each
quantum state. High-precision experiments are not necessary to rule this out for
all particles we think are fermions.

4.3 The Ignatiev-Kuzmin Model and "Parons"
Interest in possible small violations of the exclusion principle was revived by

a paper of Ignatiev and Kuzmin" in 1987. They constructed a model of one oscilla-
tor with three possible states: a vacuum state, a one-particle state and, with small
probability, a two-particle state. They gave trilinear commutation relations for their
oscillator. Mohapatra and I showed that the Ignatiev-Kuzmin oscillator could be
represented by a modified form of the order-two Green ansatz. We suspected that
a field theory generalization of this model having an infinite number of oscillators
would not have local observables and set about trying to prove this. To our Our-
prize, we found that we could construct local observables and gave trilinear relations
which guarantee the locality of the current.' 6 We also checked the positivity of the
norms with states of three or less particles. At this stage, we were carried away with
enthusiasm, named these particles "parons" since their algebra is a deformation of
the parastatistics algebra, and thought we had found a local theory with small vi-
olation of the exclusion principle. We did not know that Govorkov'T had shown in
generality that any deformation of the Green commutation relations necessarily has
states with negative squared norms in the Fock-like representation. For our model,
the first such negative-probability state occurs for four particles in the representa-
tion of 54 with three boxes in the first row and one in the second. We were able to
understand Govorkov's result qualitatively as follows:' 8 Since parastatistics of order
p is related by a Klein transformation to a model with exact SO(p) or SU(p) internal
symmetry, a deformation of parastatistics which interpolates between Fermi and
parafermi statistics of order two would be equivalent to interpolating between the
trivial group whose only element is the identity and a theory with SO(p) or SU(p)
internal symmetry. This is inpocsible, since there is no such interpolating group.

4.,4 Apparent Violations of Siatistici Due to Compositeness
Before getting to "quons," the final type of statistics I will discuss, I want to

interpolate some comments about apparent violations of statistics due to compos-
iteness. Consider two $He nuclei, each of which is a fermion. If these two nuclei are
brought in close proximity, the exclusion principle will force each of them into ex-
cited states, plausibly with small amplitudes for the excited states. Let thr ...retion

operator for the nucleus at location A be

b1A= -AI 4A + A +.., iAA« << 1 (10)

"F, .,-17d>l- 11iI'•I 1 I l I i•] ! 'W!Ir . i' ta_ n'__~_ uia ___~__ r':•
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and the creation operator for the nucleus at location B be

-- -Abo +A bt + .,\D1 <<

Since these nuclei are fernions, the creation operators obey fermi statistics,

JbI, b]÷ = 0 (12)

Then,
bl bt 10) = Ai- -.-- A 1- A,]b -bA0), (13)

115'ba'1o)JI - (AA - AH)' << 1, (14)

so, with small probability, the two could even occupy the same location, because
each could be excited into higher states with different amplitudes. This is not an

intrinsic violation of the exclusion principle, but rather only an apparent violation

due to compositeness.

4.5 "Quoni"

Now I come to my last topic, "quons." 15 The quon algebra is

"ahal - qlra = bka. (15)

For the Fock like representation which I consider, the vacuum condition

aklo) = 0 (16)

is imposed.
These two conditions determnine all vacuum matrix element of polynomials in

the creation and annihilation operators. In the case of free quons, all non-vanishing
vacuum matrix elements must have the same number of annihilators and creators.
For such a matrix element with all annihilators to the left and creators to the right,

the matrix element is a sum of products of "contractions" of the form (Olaat10) just
as in the case of bosons and ferinions. The only difference is that the ttrmns are
multiplied by integer powers of q. The power can be given as a graphical rule: Put
o's for eaca annihilator and ×'s for each creator in the order in which they occur in
the matrix element on the x-axis. Dýaw lines above the x-axis connecting the pairs
which are contracted. The minimum number of times these lilies cross is the power
of q for that term in the matrix element,

The physical significance of q for small violations of Fermi statistics is that

q = 2V - 1, where the parameter V appears in Eq.( ). For small violations of Bose

statistics, the two-particle density matrix is

P2 (1 V)p, + Vp., (17)

where p,(.) is the symmetric (antisymietric) two-boson density matrix. Then q
1 - 2V.

For q in the open int.erval (-1, 1) all representations of the symmetric group

occur. As q 1, the symmetric representations are more heavily weighted and at
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q = I only the totally symmetric representation remains; correspondingly, as q -- -1,
the antisymmetric representations are more heavily weighted and at q = -1 only the
totally antisymmetric representation remains. Thus for a general n-quon state, there
are n! linearly independent state.s for -1 < q < 1, but there is only one state for q = ±1.
I emphasize something that many people find very strange: there is no commutation
relation between two creation or between two annihilation operators, except for q =

±1, which, of course, correspond to Bose and Fermi statistics. Indeed, the fact that
the general n-particle state with different quantum numbers for all the particles has
n! linearly independent states proves that there is no such commutation relation
between any number of creation (or annihilation) operators. An even stronger
statement holds: There is no two-si.1'd ideal containing a terma with only creation
operators. Note that here quons dii rom the "quantum plane" in which

y= qyx (18)

holds. Quons are an operator realization of "infinite statistics" which were found a:

a possible statistics by Doplicher, Haag and Roberts' 3 in their general classification
of particle statistics. The simplest case, q = 0,20, suggested to me by Hegstrom, was
discussed earlier in the context of operator algebras by CGntzs3. It seems likely that
the Fock-like representations of quons for jqj < 1 are homotopic to each other and,
in particular, to the q = 0 case, which is particularly simple. Thus it is convenient,
as I will now do, to illustrate qualitative properties of quons for this simple case.
All bilinear observables can be constructed from the number operator, Il a. nTk, or
the transition operator, nkg, which obey

Although the formulas for nk mid Ilk: in tle general case2
2 are complicated, the

corresponding formulas for q = 0 are simple.20 Once Eq.(18) holds, the Hauniltonirm
and other observables can be constructed in the usual way; for examnple,

tc=.tkn, CtC. (20)
k

The obvious thing is to try
"ak = atak. (21)

Then
[Ilk, ot'j t(h 4all - ~441at . (22)

The first term in Eq.(22) iii 6ka as desired; however the second term is extra and
must be -anceled. This can be done by adding the term J:, a1aka, to the term in
Eq.(?' E£his cancels the extra term, but adds a new extra term, which must be
cancelecn y atother term. This procedure yields an iafinite series for the number
operator and for the transition operator,

71a1 = ~at,+> edj, +t. lik, = +E k lt, + Et + .. (23)
t 102tl
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As in the Bose case, this infinite series for the transition or number operator defines
an unbounded perator whose domain includes states made by polynomials in the
creation operators acting on the vacuum. (As far as I know, this is the first case in
which the number operator, Hamiltonian, etc. for a free field are of infinite degree.
Presumably this is due to the f: ct that quons are a deformation of an algebra and
nre related to quantum groups.) For nonrelativistic theories, the x-space form of
the transition operator isa

pi(x; y) = ot(x)4(y) + J dfz4A(s)tt(x)t(y)4(z)

+I d3
zidfz 2 ,(z 2 )&(zi)4A(x)/(y)t(ai)t(m 2 ) +***, (24)

which obeys the nonrelativistic locality requirement

[pi(x;Y),Vl(w)]_= 6(y-w)tt(x), and p(x;y)10) = 0. (25)

The apparent nonlocality of this formula associated with the space integrals has no
physical significance. To support this last stat .cnent, consider

fQjM(z),QJM()]- = U, z y, (26)

where Q - fd'rj"(z). Equation (26) seems to have nonlocality because of the space
:ntegral in the Q factors; however, if

U-(x),j'()-= 0, r ~ , (27)

then Eq.(26) holds, despite the apparent nonlocality. What is relevant is the com-
mutation relation, not the representation in terms of a space integral. (The appar-
ent nonlocality of quantum electi odynamnics in the Coulomb gauge is another such
example.)

In a similar way,

[P2(x,y;y',x'),V't(z)[_ =6(x' - z),tb(x)pm(y,y') +
6
(y' -z)4t(y)p 1 (x,x'). (28)

Then the Ham.iltonian of a nonrelativistic theory with two-body interactions has
the form

IH = (2rQ)-' dnzV, V,,pj(x,x')jx=x, + 1Jd yV(Ix-yI~p2(xY;Yx). (29)

[H,4,1(z,)... 01(z,)]_ = [-(2-)-' ZfV, + E V(Izi - ,I)]' t ('i)

+ j- e / V(x. zjl)ot(3,) ... Ot(s.)pj(, •'). (30)

Since the last term on the right-hand-side of Eq.(30) vanishes when the equation
is applied to the vacuum, this equation shows that the usual SchrSb inger equation



310

holds for the ,i-particle system. Thus the usual quantum mechanics is valid, with
the sole exception that any permutation symmetry is allowed for the many-particle
system. This construction justifies calculating the energy levels of (anomalous)
atoms with electrons in states which violate the exclusion principle using the normal
Hamiltonian, but allowing anomalous perrn.utation symmetry for the electrons.2 4

I have not yet addressed the question of positivity of the squares of norms
which caused grief in the paron model. Several authors have given proofs of
positivity."-38 The proof of Zagier provides an explicit formula for the determi-
nant of the n! x n! matrix of scalar products among the states of n particles in
different quantum states. Since this determinant is one for q = 0. the norms will be
positive unless the determinant has zeros on the real axis. Zagier's formula

del M.(q) = 11=k(1 -= (1±1))(n-).if&(h+I, (31)

has zeros only on the unit circle, so the desired positivity follows. Although quons
satisfy the requirements of nonrelativistic locality, the quon field does not obey
the relativistic requirement, namely, spacelike commutativity of observables. Since
quons interpolate smoothly between fermions, which must have odd half-integer
spin, cnd. bosons, which must have integer spin, the spin-statistics theorem, which
can be proved, at least for free fields, from locality would be violated if locality were
to hold for quon fields. It is amusing that, nonetheless, the free quon field obeys
'he TCP theorem and Wick's theorem holds for quon fields.'

It is well known that external fernnionic sources must be multiplied by a
Grassmann number in order to be a valid term in a Hamniltonian. This is necessary,
because aAditivity of the energy of widely separated systems requires that all terms
in the Hiansiltonian must be effective Bose operators. I constructed the quon analog
of Grassmann numbers"' in order to allow external quon sources. Because this issue
was overlooked, the bound on violations of Bose statistics for photons claimed in'0

is invalid.

4.6 Speicher's Ansatz
Speicher'7 has given an ansatz for the Fock-like representation of quons anal-

ogous to Green's ansatz for parastatistics. Speicher represents the quon annihilation
operator as

N

ah= Iiit4-_N-1/2 0), (32)

where the 0) are Bose oscillators for each a, but with relative colmmutationl relations
given by

= )b)Iboa, t ) 3, where (-)= . (33)

This limit is taken as the limit, N -, 0, in the vacuum expectation state of the
Fock space representation of the b("). In this respect, Speicher's ansatz differs from
Green's, which is an operator identity. Further, to get the Fock-like representation
of the quon algebra, Speicher chooses a probabiligs-ic condition for the signs a(-'),

= 1) = (1 + q)/2, (34)
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p-1) = (1 - q)/2. (35)

Rabi Mohapatra and I tried to get a specific ansatz for the ,(-I) without success.
I was concerned about that, 1 ut Jonathan Rosenberg, one of my mathematical
colleagues at Maryland, pointed out that some things which are easy to prove oil a
probabilistic basis are difficult to prove otherwise. For example, it is easy to prove
that with probability one any number is transcendental, but difficult to prove that
7r is transcendental. I close my discussion of Speicher's ansatz with two comments.
First, one must assume the probability distribution is uncorrelated, that is

(1/N 2 )EsZ='t0  
((1/2)(1 + q)(1) + (1/2)(1 - q)(-1)] = q, (36)

(l/N3) 92('•s•'• =q (37)

(1/Na)E s''•)('3() ---qS, (38)

etc. Secondly, one might think that, since Eq.(32) implies the analogous relation for
two annihilators or two creators iii the Fock-like representation, Speicher's ansatz
would imply akat - qajah = 0, which we know cannot hold. This problem would
arise if the ansatz were an operator identity, but does not arise for the limit in
the Fock vacuum. Since a sum of Bose operators acting on a Fock vacuum always
gives a positive-definite norm, the positivity property is obvious with Speicher's
construction.

Speicher's ansatz leads to the conjecture that there is an infinite-valued hid-
den degree of freedom underlying q-deformations analogous to the hidden degree of
freedom underlying parastatistics.
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It is argued that certain recent advances in the

construction of a theory of the collapses of Quantum-Mechanical

wave functions suggest the possibility of an account of the

tendencies of thermodynamic systems to approach their equilibrium

states in which epistemic considerations play no role whatever.
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0) Introduction

It is something of a cliche of theoretical physics, by now,

to entertain the hope that the explicitly probablistic and

explicitly time-reversal-asymmetric character of the collapses of

quantum-mechanical wave-functions might somehow be related to,

might somehow be explanatory of, the probablistic and time-

reversal asymmetric character of the laws of thermodynamics.

And it is only slightly less of a cliche to point out that

on second thought, on taking stock of precisely what sorts of

probabilities and time-reversal-asymmetries collapses nctloAlly

exhibit, the prospects for such an explanation don't look so

good.

And what I want to do in this note is to rehearse the above

considerations in some detail, and then to show how certain

recent advances in our understanding of the collapse-process shed

a radically different light on them.
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2.) What the Central Probla at the loundations of

Statistical Mechanics is

Recall some actual historical circumstance (of which you

have witnessed a huge number) in which two macroscopic bodies

whose temperatures initially differed were brought into thermal

contact with one another, and in which those two bodies were not

subsequently disturbed, and in which, ten minutes thereafter, the

temperature-difference between those two bodies had decreased;

and consider what the correct explanation of that decrease is.

The statistical-mechanical explanation of that decrease,

both in the classical and in the quantum case, runs (crudely)

like this:

The initial macrostate of that two-body system was

compatible with a huge number of its possible microstates; and

the overwhelming majority of those compatible microstates were

ones which the deterministic equations of motions entail would

evolve, over the next ten minutes, towards states in which the

temperature-difference between those two bodies is smaller.

And

There's a principle of reasoning (which has gone under

various names at various times: a principle of indifference, a

principle of s_ymmetry) to the effect that if we have no

information bearing on the question of which one of a certain set

of states obtainu, then the probability we assign to any

particular one of those states obtaining ought to be equal to the

patcua gn-- -b-
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probability we assign to any particular other one of them

obtaininq.

And

As of the moment when those two bodies were brought

together, nobody had any information whatever bearing on the

question of which one of the above-mentioned compatible

microstates of that system then obtained.

And so

As of the moment when those two bodies were brought

together, everybody ought to have judged it to be overwhelmingly

likely that the microstate of that system was one of those which

the deterministic equations uf motion entail would subsequently

evolve towards states in which ie temperature-difference between

those two bodies is smaller.

And so

It was very much to be expected, as of the moment when those

two bodies were brought together, that the temperatures of those

two bodies would approach one another over the subsequent ten

minutes.

And it is arguably the central problem at the traditional

foundations of statistical mechanics that there has always seemed

to be something manifestly unsatisfactgry about that explanation.

It's something like this:

Nothing, surely, about what anybody may or may not have

known about those two bodies at the moment when they were brought

together can have played any role in bringing it a (that is:
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in causing it to bappen) that the temeratures of those two

bodies subsequently apRroached one another! And so presumably

nothing about what anybody may or may not have known about those

two bodies at the moment when they were brought together can play

any role in satisfactorily explaining why their temperatures

subsequently approached one another. And yet (and this is what

the trouble is' the fact that nobody knew, as. of the moment when

they were brought together, precisely which one of the possible

microstates of those two bodies then obtained plays a crucial

role, an indispensable role, in the above so-called "explanation"

of the fact that the their temperatures subsequently approached

one another.

And what I want to do in this note is to describe how

(notwithstanding the sorts of objections which were alluded to in

the introduction, and which will be described more fully in the

next section) certain recent developments in the quantum-

mechanical theory of measurement suggest the possibility of a new

and much improved foundation for statistical mechanics, in which

no such trouble can arise.

2) What We're in Need of

Let's set up some notation.

Consider (again) the two-body system we talked about before.

Call the set of those of the possible microstates of that system

'-3
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which are compatible with its initial macrostate "{C}". And call

those microstates in {C} which the equations of motion entail

will subsequently evolve towards states in which the temperature-

difference between the two bodies is smaller "normal"

microstates. And call those microstates in {C} which the

equations of motion entail will subsequently evolve towards

states in which the temperature-difference between the two bodies

is bigger "abnormal" microstates.

And note that {C) will have a natural metric. In the

classical case that metric will be the euclidian metric on the

phase space, and in the quantum-mechanical case it will be the

Hilbert-space metric generated by the absolute square of the

inner product.

And note that a serviceable idea of what it amounts to for

two microstates to be only microscopically different from one

another, an idea of what it amounts to for two microstates to be

within one another's microscopic neighborhoods, can be

straightforwardly built out of that metric.

Now, it has already been mentioned here (and this is a fact

that was made important use of in the above "explanation") that

normal microstates in {C} vastly outnumber abnormal microstates

in {C}; but it also happens to be the case (and this is a fact

that was not made use of in the above "explanation") that normal

microstates vastly outnumber abnormal microstates in every
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individual microscopic neiohborhood Of {C} 1 , and (more

particularly) that normal microstates vastly outnumber abnormal

rnicrostates even within the microscopic neighborhoods of every

one of the abnormal the microstates in {C}.

And what that means is that the property of being a normanl

state is extraordinarily stable under small perturbations of

those two bodies, and that the property of being an abnormal

state is extraordinarily unstable under small perturbations of

those two bodies.

And what that tacans is that if the two bodies we've been

talking about here were in fact somehow being frequently and

microscopically and randomly perturbed, then the temperatures of

those two bodies would be overwhelmingly likely to approach one

another no matte whiich one of the microstates in {C} initially

obtained.

And so if the t.wo bodies we've been talking about here were,

in fact, somehow being frequently and microscopically and

randomly perturbed, then the fact that their temperatures

approached one another could be explained obectivel, it could

be explained (that is) without reference- nthin about whaEt

anybody happes _to have known.

And what I want to explore in this note is a way of taking

advantage of that.

To begin with, a pair of perennial misunderstandings will

" ... -- • '? • . . ... r ,'• . • -- . ..
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need to be cleared up.

1) The perturbations in question here are going to have to

be genuinely random, which is to say that they are going to have

to be connected with real physial chances in the .fundmnjtal

.ias of nature.

That seems to have had a way of ,incannily escaping people's

attention. It has cften been suggested in the literature, for

example, that (since none of the macroscopic two-body systems of

which we have ever had any experience, and none of the

macroscopic two-body systems of which we ever shall have any

experience, are genuinely japlated ones) those perturbations can

be seen as arising simply from the interactions of the two-body

system we've been t-.king about here with its environment. 2 But

so long k-3 whatuver constitutes the environment of those two

bodies ±s subject tc the same sorts of deterministic laws as the

40e ~i •ents of those bodies themselves are, that sort of thing

Wi < tenntt. get us nowhere: whatever perturbations arise from

-. erLt ,y with an environment like that will be "random" (if

* • the word for it) only in the explanatorily irrelevan±t

"t,,u- that nobody hanpens to be aware of Precisely what they are.

2) Not just pn_ real physical chances in the fundamental

laws of nature will necessarily do the trick.

That's been missed too. That's what's been going on, for

example, throughout the long tradition of attempts to connect the

probabilities of statistical mechanics with the real phy!,ical

- -l- . .... . .. • ..



321

chances in the fun~damental laws of Quantum Mechanics.3 What the

trouble with all those attempts has always been (and this is th-

trouble that wa!; alluded to in the introduction) is that on the

stndard way of thinking about Quantum Mechanics (that is: on the

Copenhagen way of thinking about it, or on von Neumann's way of

,chinking about it) those chances only appear in connection with

the act of megasurevent, and the tendency of a two-body system

like the one we've been talking about to approach its equilibrium

state presumnably doesn't depend on ar~ybody's having ineasures that

system, or on anybody's being in the proce-sq of measuring that

system, or on anybody's being ab)out to measure that system, and

so standard sorts of Quantum-Mechanical chances (even though

they're real physical chances, and not merely evistemic ones) are

presumably po the sorts of chances that can play any role

whatever in explaining that tendency.

But it turns out that there are extremely good reasons

(reasons which have been in the literature for an extremely long

time, and which have nothing at all to do with the foundations of

statistical mechanics) for believing that the standard way of

thinking about quantum mechanics can't be right; and it turns out

that a promising non-standard way of thinking about quantum

mechanics exists in which (hances come up somewhat differently.

That's what the next ;e~utiw~n will be about.
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3) What We Have

Let me begin by very briefly rehearsing the quantum-

mechanical measurement problem.

It comes up like this: Suppose that every physical system in

the world invariably evolves in accordance with the linear

deterministic quantum-mechanical equations of motion; and suppose

that M is a good measuring instrument for a certain observable A

of a certain physical system S. What it means for M to be a

'good' measuring instrument for A is just that for all

eigenvalues ai of A:

[ready>M[A=ai>s-------> [indicates that A=ax>M[A=ai>s (1)

where [ready>M is that state of the measuring instrument M in

which M is prepared to carry out a measurement of A, ' ---- >'

denotes the evolution of the state of M4+S during the measurement-

interaction between those two systems, and (indicates that A=ai>M

is that state of the measuring instrument in which ,say, its

pointer is pointing to the ai- position on its dial. That is:

what it means for M to be a 'good' measuring instrument for A is

just that M invariably indicates the correct value for A in all

those states of S in which A has any definite value.

The problem is that (1), together with the linearity of the

equations of motion entails that:
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[ready>M [A=ai>s -- > [indicates that A=ai>M[A=ai>s (2)

And that appears not to be what actually happens in the world.

The right-hand-side of (2) is a superposition of various

different outcomes of the A-measurement (and not any particular

one of them), but what actually happens when we meas ure A on a

system S in a state like the one on the left-hand-side of (2) is

that one or angther of those particular outcomes does emergel

And so there's been a tradition of thinking that there must,

in fact, be physical processes which do not proceed in accordance

with the linear equations of motion: there has been a tradition

of thinking that there must be such things in the world as non-

linear, chance-governed, collapses of the wave-function.

And those collapses must somehow be connected with the act

of measurement. But how connected, exactly?

The standard way of thinking about quantum mechanics

connects them by fiqt. It amounts to a fundajpjutal physical law,

on the standard way of thinking, that measurements cause

collapses.4

But it's been understood for a long time that (since the

meaning of a word like "measurement" is simply not precise enough

to appear in any Lundamentaljphysical law, and since there isn't

any plausible means ot makin it that precise) the standard way

of thinking about that stufl can't possibly be the rig•h•t way of

thinking about it.
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And so it's been understood for a long time tnat (if the

argument just under equation 2 is accepted) there is going to

have to be some sort of a bona fide hysicyal theory of the

collapse of the wave-function; of which the connection between

collapses and measurements will be an approximate consequence, as

opposed to a fundamental postulate.

Ghirardi, Rimini, and Weber have recently proposed a theory

(the first theory) like that. Their idea (which is formulated

for nonrelativistic quantum mechanics) goes like this: The wave

function of an N partiole system

%V (rIL .... rN, t) (3)

usually evolves in accordance with the Schrodinger equation; but

every now and then (once in something like 101 5 /N seconds), at

random, but with fixed probability per unit time, the wave

function is suddenly multiplied by a normalized Gaussian (and i.'

product of those two sepouraly normalized functions is

multiplied, at that same instant, by an overall renormalizing

constant). The form of the multiplying Gaussian is:

K exp[-(r-rk) 2 /2A 2 ] (4)

where rk is chosen at random from the arguments rn, and the width

of the Gaussian, A , is of the order of 1 0 -b cm.. The urobabitiy
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of this Caussian being centered at any particular point r is

stipulated to be proportional to the absolute square of the inner

product of (3) (evaluated at the instant just prior to this

'jump') with (4). Then, until the next such 'jump', everything

proceeds as before, in accordance with the Schrodinger equation.

The probability of such jumps per particle per second (which is

taken to be something like 10-15, as I mentioned above), and the

width of the multiplying Caussians (which iv• taken to be

something like 1 0 -5 cm.) are new constants of nature.

That's the whole theory. No attempt is made to explain the

occurrence of these 'jumps'; that such jumps occur, and occur in

precisely the way stipulated above, can be thought of as a new

fundamental law; a beautifully straightforward and absolutely

explicit jAH of collapsqe, wherein there is no talk at a

fundamental level ul 'measurements' or 'recordings' or

'macroscopicnozs' or anything like that.

Note that for if'olatvd microscopic systems (i.e. systems

consisting of small numbers ot particles) 'jumps' will be so rare

as to be completely unobservable in practice; and has been

chosen large enough so that the violations of conservation of

energy which those jumps will necessarily produce will be very

very small (over reasonable time-intervals), even for macroscopic

systems.

Moreover, if it's the case that every measuring instrument

worthy of the name has got to include some kind of a pointer,

which indicates the outcome of the measurement, and it that

pointer has got to be a macroscopic physical object, and ii that
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pointer has got to assume macroscopically different spatial

positions in order to indicate different such outcomeo (and all

of this seems plausible enough, at least at first) 6 , then the GRW

theory can apparently guarantee that all measurements have

outcomes.

Here's how: Suppose that the GRW theory is true. Then, for

measuring instruments (M) such as were just described,

superpositions like

[A>[M indicates that 'A'> + [1>[M indicates that B> (5)

(which will invariably be superpositions of macroscopically

different localized states of some macroscopic physical object)

are just the sorts of superpositions that don't last long. In a

very short time, in only as long as it takes for the pointer's

wave-function to qet multiplied by one of the GRW Gaussians

(which will be something of the order of 101 5 /N seconds, where N

is the number of elementary particles in the pointer) one of the

terms in (5) will disappear, and only the other will propagate.

Moreover, the probability that one term rather than another

survives is (just as standard Quantum Mechanics dictates)

proportional to the fraction of the norm which it carries.

The reader will already have guessed what all this has to do

with the considerations of sections 1 and 2.

Let's make it explicit:

The suggestion is that _vsrty_ sinýle oe of the microstates
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in {CI (and not merely a large majority of them) will be

overwhelmingly likely, on any theory of the collapse of the wave

function like the one just described, to evolve, over the

subsequent ten minutes, into state., in whi( ii the temperature-

difference between the two bodies is g_5eK.

The suggestion (that is) is that the 'jumps' in the theory

just described are precisely the sorts of 'perturbations' we

found ourselves in need of before, the ones whereby the time-

irreversibility of the behaviors of macroscopic physical systems

can be explained objectively, the ones whereby (as a matter of

fact) it seems reasonable to hope that epistemic probabilities

can be eliminated from physical science altogether.

The business of deciding whether or not to take this

suggestion seriously will presumably involve detailed

quantitative examinations of a host of particular cases; but

there are reasons for being optimistic, even now, about how those

examinations will come out. The point to bear in mind (and this

is more or less what the point of this whole note is) is that the

radical instability of the property of being an 'abnormal'

microstate will entail that any one of an enormuus selection of

different perturbations will be capablu of getting the job done.

It would seem that we need only take care to insure that the

perturbations in question be genuinely random (unlike in the

'environmental' scenarios), and that they be frequent and

microscopic (unlike in the standard quantum-mechanical

scenarios) ; and of course all of that gets taken care of for us

in theories liko the CGhirardi' Rimini, and Weber's.
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Nonetheless, all of this will no doubt strike many readers

as suspiciously neat. Maybe it w Li be useful, then, to finish

up by briefly confronting what I iaspect will turn out to be a

typical sort of objection. This one was brought to my attention

by Philip Pearle.

It goes like this: Consider an extraordinarily tiny gas, one

which consists of something on the order of 105 molecules. Even

gasses as tiny a:; that are known to be very likely to spread out

(if space is available) over reasonable intervals of time, and

yet gassas as tiny as that very gnlikely to suffer even a single

GRW-type collapse over such an interval, and so an explanation of

the tendencies of gasses like that to evolve like that over

intervals like that in terms of collapses of the wave-functions

of their constituents is patently out of the question.

What the correct explanation of those tendencies will need

to appeal to, I suspect, are collapses of the wave-functions of

the microscopic constituents of the containers of those gasses.

And so the collapse-driven statistical mechanics that this

note is about will entail that an extraordinarily tiny and

extraordinarily compressed and 4lelutely isolated gas will have

no lawlike tendency whatever to spread out.

And it can hardly be denied that that runs strongly counter

to our intuitions.

What it does not run counter to, however (and this is what
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has presumably got to be important, in the long run), is our

empirical experience.
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153-65.

~7!



TIME REVERSAL OF SPIN-SPIN COUPLINGS

A. PINES
University of California, Berkeley

ABSTRACT

It is still commonly believed that the decay of order in a coupled many-body system
approaching thermodynamic equilibrium is irreversible. A famous example involves
the decay of transverse magnetization from coupled nuclear spins in a solid. The free
induction decay is analagous to the disappearance of order in a previously comp; essed
gas diffusing to fill a larger container.

Figure 1: Decay of magnetization in a system of coupled spins,
and analogy to difiusion in a lattice gas.

Of course it is recognized that, under unitary evolution, the order does not disappear,
but evolves into subtle inter-particle correlations. The question is whether the initial
order can be retrieved and, furthermore, whether the development of the correlations
can be observed experimentally. I shall show examples of coupled many-body spin
systems in which the apparently irreversibly decayed spin order is retrieved by time
reversal of the spin-spin couplings under liaeberlen-Waugh averaging.

Figure 2: Expei imentally observed decay of nuclear magnetiza-
tion and multiple-pulse induced echo during the free induction
of '9F spins in solid calcium fluoride.
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Unlike the Hahn spin echo in a system of uncoupled spins, which appears after a
single refocussing pulse, time reversal in the coupled system requires a prolonged
multiple-pulse sequence. Prior to time reversal the coupled system is, for most intents
and purposes, in equilibrium and appropriately characterized by a canonical density
operator. By means of coherent phic shifting, it is possible to detect and follow
the time evolution of multiple-quantum spin coherences to high order (hundreds of
particles).
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Figure 3: Experimentally observed evolution of multiple-
quantum coherences arising from the development of correla-
tions among coupled 'H spins in solid hexametliylbenzene.

The mulLiple-quantuin cuherences reflect the existence of evolving spin-spin correla-
Lions (the subtle correlations that now sustain the original one-particle order). The
coherences exhibit interesting examples of Abelian and non-Abelian geometric phases.

Refez-ences: A. Pines, NMR in Physics, Chemistry and Biology: Illustrations of
Bloch's Legacy, 1'rocecdirigs of the Bloch Symposium, ed, W. A. little, World Sci-
entific (1990); J. W. Zwanziger, M. Koenig, and A. Pines, Berry's Phase, Ann. Rev.
Phys. Chem., 41, 601 (1990); L. Prosley and A. Pines, Lectures on Pulsed NMR, Pro-
ceedings of the CXXIII School of Physics "Enrico Fermi", ed. B. Maraviglia, North
Ilolland (1994).
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Abstract

The issue of neutron acceleration by uniform electromagnetic fields is examined. Al-

though straightforward manipulation of the equations of motion implie.s such an effect,

some doubt has conmtinued to exist as to whether it is in principle observable. To resolve

this matter a gedanken experiment is Proposed and anlyzed using a wa;ve packet construc-

tion for the neutron beam, By allowing arbitrary orientation for the neutron spin as well

as for the electric and magnetic fields a nonvanishing acceleration of the center of the neu-

tron wave packet is found whlch confirms the predictions of the canonical formalism. It is

also shown that the difference between the canonical and kinetic momenta is in principle

observable and in agreement with what one obtains using operator methods.
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Although the motion of a neutral nonrelativistic spin-1/2 particle in a magnetic field i::

generally regarded as well understood, the corresponding problem with combined electric

and magnetic fields continues to evoke discussion of underlying principles. Such a system

can be described by the Hamiltonian

H p [B- 1 × (1)
2m Mc

where p and m refer to the momentum and mars respectivoly of the particle (e.g., a

neutron). The magnetic moment is/• = ya/2 with a being the set of Psidi spin matrices.

It is assumed that the fields E and B are ,miform mid time independent. Upon calculating

the commutators of H with p, x, and a one finds

k=p/m+ -_E×xp (2)

j=O (1

171

It follows upon insertion of (4) into the time derivative of (2) that'

k = -1 Exx ( )+O(EB ) + (5)
mc

Thus the inclusion of an electric field is seen to lead to a nonvanishing acceleration propor

tionad in lowest order to both JEl and IBI. It also implies that the canonical momentum p

does not coincide with the kinetic momemtum my.

Although the overall consistency of the canonical formalism of quantum mechanics

would appear to offer no alternative to the result (5), there has been a recent suggestion'

that in fact the predicted acceleration is ,-ssAntially unobservable. It should he noted,

however, that at least under the assumption of constant fields such a question intist be

capable of being resolvcd unambigu:i.alsy by a direct calculatio" based ,tn the Schrddinger

equation. In particular a neutron which passes from a field free region to one described

by the Hamniltonian (1) can be viewed as being subject to a constant but spin dependent
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potential. Corresponding to the particular spin eigenvalues the potential harrier for fixed

p, is then either attractive or repulsive.

To settle tbs- issue one can imagine carrying out the following experiment. A wave

packet describing a neutron is allowed to propagate in the field free region z < 0 and

to enter the tuniformn field region z > 0 at normal incidence. The coordinate 4ystcin is

chosen so that the center of the wave packet passes through the origin at tiiiie t :- 0. It

is also assumed that the neutron is totally polarized in the direction of the unit vector

n. At a distance zD from the origin a detector is placed which mecasures the transverse

displacement of the beams as a function of zjD to arbitrary accuracy. Since- there can be

no p)ossibility of carrying out such nicasnireineuts without it tratisverse localizations of the

beam, it is evident that the wave packet miust be spread in at least one of the two traiixverse

miomentum variables. F-irthermnor, it sp~reading in thme z cOOrdhinLtC is required in ordler to

allow at time of flight to be inferred from the detector position zj).

Thus the tqpatiah part of the wave function for - < 0, t < 0I is given by

'(z,X -71') =f I .'4
( 2 7 r 2 ) 2 - ( 6 )

exp) - i 2 ' +mi A iftP,

where n' is a unit vector in the r, y p~lan(-. The momentum space wave fum-tion'm ](1) p. 71')

is taken to be ani even fimmietion inl 1) - ' which is peakedl around the, point 1-i 0' 1), =k.

It is nornualized b y thec condition

I (2i7 r~)2

While aL Gaussian formin for f(),j - ?I') would allow anl explicit calcullation of tIt r'Wave

function to he pserfo rmied , it is In t in fart required fo~r this probledmu. It mnay al152 be note~dc

that ;1 Ii )exli7AttiOI1 Of the Wave functioni in thuesecon1 d tram svers' direcdionl is possible as

Well. blt. is lNasiCally irrelevant. t~o the result.

When the wave packet passes through tlie originm the ummml reflection ILI R1m11 iss

effects are enicouintered although omme, clearly is initerested only in the transuui tted parut forc
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the purpose of this work. Matching the function and its derivative at z - 0 one finds that

the spin part is unaltered while the transmitted beam has a form identical to that given

by (6) provided that p, in the exponential c*•' x is replaced by the momentum component

P. appropriate to propagation in the nonzero field region. The latter is obtainUd from the

equation

Pm B 2r'- P" -c xE (7)
27n 2mn roc E

where (to lowest nonvunishing order in E) it is the vector p which appears on the right lhod

side of (7) in combination with E. Clearly, one could proceed at this point by considering

separately the two cigenniodes of propagation inad determining the applropriate spin part

of the wave function by defining a spin bllsis with respect to tih direction of the vector

13 - ; Xp x E. Fortunately, a simpler and more elegant approach is possible which involves

calculating f. ;1 Ia matrix in the spin spacc and using the projector

1P 1 0 (1 + -n)
2

to include the initial polarization sttate of the bean.

To the required order one finds from (7) that

f71 1
+z r+- a iB---px El

This then leads to the evaluation of < x . nl > by the expression

< x ' > u -J d(x. ,')dz(x ,,') J gŽ p¶d~>i -n')d(p' W-)

I I (274

exI) -- (1) ,-----

f(p.,p r')f*(p'2 ,' - n')T

whire

T2 Tr exp iz 2La. i(B- p xE) (I i.i)
2p2, ,ac J

,,xp -z o B- P
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The evaluation of the trace is simplified by the observation that because of the antisym-

metry of the integrand in Eq. (8) under the simultaneous change of sign of x • n', 1) • n',

and p' . n' only those terms in T which are odd in p. n' and p' n' can contribute. Upon

writing

exp i a- -. (B--LP x E) 1 1
SC + -I - - p x E-..( - -- p x E)S

wh,
[ rm~z 1

(C, S) -=(Cos,sin)l-=--IB- 1- px El

and using a prime to denote the same quantities when p is replaecd by p', it is first note~d

that the CC' terms make no contribution to the trace. To the desired order one thus finds

for (9) the result

T= -i SS'" xB.-Ex (p p,)

+! (CS'+C'S) .-E x(p - p)-
2 lBI (-

Upon inserting this into (8) it is observed that the canonical coinuttatiun relations

imply that the combination (x n')(p - p') becomes in' so tha~t (8) reduces to

< J dptd(p, n') f(PP ,)(1
(27 )2 1 (10)
I S2(1 X B). (E X Y1') -r CSn E x n'

To complete the Calculation one notes that it is sutfficient to work to lowest order in E and

B and to neglect corrections of the order of Api/k where Ap, is the wave packet width in

inoneutuni space. This allows C muil S to be replaced liy 1 and m-zI1tI/2k, respectively,

thereby yielding for (10)

< x f' > = x n x B)]
2 me 1  1 21

u t.Ex -- /n -)c

2i
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where z has been replaced by zD which in turn is related to the time of flight t by zD

kt/rn. This identification is made possible by virture of the fact that the wave packet is

localized in the z coordinate while its center moves with velocity k/ri.

The verification of the expressions derived in ref. 1 for the acceleration andI the

kinetic momentum is now immediate. For short times t Eq. (5) clearly implies that there

should exist a t' term in the mean transverse displacement whose coefficient is one-halt' the

acceleration. It is striking that the calculation presented here yields an acceleration which

has precisely the vector structure implied by the canonical formalisii. Also noteworthy is

t1, fact that the second term in (11) is linear in t and corresponds to the uniform drift of

the particle beam implied by the difference between the catuonical and kinetic nmomenta iw.

indicated in Eq. (2). This term (unlike the acceleration) requires no magnetic field and

one might therefore expect that it would offcr fewer obstacles to nil experimental detection,

One of us (CRH) acknowledges the support of U.S. Department of Evnrgy Grant No,

DE-FG02-91ER40685.
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Abstract

It is shown that the Schrodinger idea that considers a particle as an extended
wave function is not wrong as is usually thought. The argument relics on a
new method of measurement - the protective measurement - which
measures the Schrodinger wave without disturbing it. However, to avoid
paradoxes we have also to accept a new formulation of quantum mechanics
which is bused on two state vectors instead of one, the usual (history) state
evolving toward the future und a second backward evolving (destiny) state.

I. The Staudard Interpretation of Quantum Theory

When Schrddinger proposed his wave equation, there was much argument
about the physical meaning of the wave function. While Schrddinger believed
that the wave function for a single particle represents an extended object that
was really moving in space, Born suggested that the wave function of a single
particle has only a probabilistic meaning. That is, any experiment looking at
a single particle will find that particle at only one location, but will never see
it as an extended object. Only if we have an ensemble of particles, can we see
the full implication of the wave function. For an ensemble the quantity
yi*(x)xV(x) is proportional to the probability of finding the particle at the point
x. We are able to infer the extemled nature of a single particle only indirectly,
for example, by analyzing a two slit experiment.

There are three general arguments usually presented as to why we can never
see the wave function of a single particle. These arguments seem convincing,
but we will later show why they are misleading.

1. In the laboratory we never see an extended object. If we make a
measurement of an electron, we will always see it as a point on a
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photographic plate, or a single track in a cloud chamber. It will always
appear as a localized object, never as an extended object.

2. The second argument appeals to unitarity. Suppose we have two
possible wavefunctions in the Schr~dinger representation, N'I and IV2.
These are two different descriptions in space since, in general, the two
functions are not orthogonal vectors in the Hilbert space. Suppose we
now say that there is a measurement that can distinguish between the
states NIV and W'2 which are not orthogonal. That means there exists a
measuring device with some state 0 such that if the system is in state
yl W`4 oi& :)f the measuring device will go to ý1, and if the system is
in state XV2 the measuring device state will go to 02. To be able to
distinguish between the two results, we must have 01 and 02
orthogonal. However, this violates unitarity since the initial states
were not orthogonal.

The usual argument is to have a large number of' particles described by
the same wavefunction %. That is, we start with a set 4l(xl), Wi(x2),
... W/I(XN) and a set 4'2(xI), WJ2(X2), ..... 2(XN). Using these two
ensembles, we can distinguish between the two states, since the scalar
product between any WI and V2 is less than 1. The sB:alar product
between the states of two sufficiently large ensembles of particles is
essentially zero. Once again the statistical interpretation seems to be
indicated.

3. The last ar, inment is the most important since it Fbrces us to adopt the
two-vector formulation. Suppose at time t, there is a quantum particle
whose wavefunction is non-zero in a large region. Let uw assume there
is an experiment which can determine that the particle is spread over
this large region. We do this experiment and soon afterwards we do the
usual experiment and find the particle localized at one position. If we
were studying a charged particle, huge currents must, flow to conserve
charge. Othe-wise there would be another frame oftreference where the
charge is not conserved. Thus the wavefunction cannot collapse
infinitely fhst. There is no way that an extended object can suddenly
become a localized one.

We would like Lo be able to observe the full wave function. The wavefinction
obeys the Schridinger equation which tells us we have a vector in Itilbort
space which evolves in a deterministic fashion. All the mystery in quantum
rnoehaiiics occurs because we are told that we cannot observe the
wavefunction. What we can observe is aot what ,s described by the
mathematics. The connection between what can be observed in the laboratory

ME!
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and what is described by the Schr6dinger equation is only probabilistic. It
would be beautiful if we could see the wavefunction directly.

II. Protective Experiments - An Example

The main argument for the reformulation suggested here is that there
are experiments which protect the wavefunction so we can measure the
wavefunction without destroying it. We call such experiments, protective
experiments. Shelly Glashow suggested calling these protective experiments
"in vivo" experiments. This is in analogy with biological experiments which
preserve the life in a cell of small living objects. We shall consider below an
example in which the protection is due to energy conservation.

Suppose we are griven a particle described by a known Hamiltonian with
discrete, non-degenerate eigenstates. We are told that the particle is in a
definite cigenstate and we are asked to measure its wavefunction. A
particular example of this would be an electron in the ground state of a
hydrogen atom. In the standard interpretation, we measure the energy of this
state and say that this is all that can be known. However, quantum
mechanics contains much more information than this. It tells us that there is
a wavefunction at each position in space. This is an infinite amount of
additional information for a single particle. We will now discuss how we can
extract this information without disturbing the wavefunction.

Measurement in an ideal quantum-mechanical experiment has been
described by von Neumann. We let Hi be the Hamiltonian of the free system.
This could be the Hamiltonian of an electron in the atom where, for
simplicity, we take the proton mass as infinitely large. We let A represent the
quantity we wish to measure, and let q be. a variable of the measuring device.
Then, the Hamiltonian of the sysvni is

H = H0 + g(t)qA. (1)

where g(t) is an interaction parameter. We choose

gQt) =go e- t11J (2)
:1T

Here T is tl~e effective time of the measurement and go is a constant
representing the strength of the coupling between the system and the
measuring device.

There are two interesting limits. The first is the impulsive limit where we
take T -- 0 and the other is the adiabatic limit where we take T - T +. The

iit
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usual experiment is to take the impulsive limit in which the experiment lasts
an extremely short time. In this case we can ignore Ho, and the momentum
conjugate to q will be changed by one of the eigenvalues of A. We are only
able to get probabilities for this change and hence cannot measure the
wavefunction.

In the adiabatic limit the experiment lasts a long time while the coupling
between the measuring device and the particle becomes very weak and
approaches zero. Surprisingly, even though the coupling goes to zero, we can
still get information about the particle and we get this information without
changing the wavefunction. Indeed, in the adiabatic limit the ground state
wave function is the ground state of the full Hamiltonian during the full time
of the measurement. The only thing that can change is the phase.

We will first look at an eigenstate of q and then at a superposition of
eigenstates. For an oigenstate, the adiabatic limit becomes a normal
perturbation problem. The energy goes to the original energy plus a
correction that goes to zero, that is

E = E0 + g(t)q (A) (3)

where (A) is the expectation value of A calculated with the original
wavefunction. Now E - E0 --4 0 but the total phase accumulated is

JE(t) dt = JEt dt + g, q(A). (4)

Since quantum theory is a linear theory, what is true for q as an eigenstate is
true for a superposition of eigenstates. If we start with the measuring device
in a superposition of q's there will be a different phase associated with each
value of q. Ifp is the momentum conjugate to q, the change in p will be 6p =

go(A). So we can measure not only the eigenvalue of an operator, but the
average of an operator in a given state.

We can also clearly make N simultaneous measurements with N measuring
devices, each measuring a different An. The Hamiltonian in this case is

N
H = HO + g(t) YqnAn. (5)

00.O
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If we choose the set of variables An to be the projection operators in different
regions of space, the results for each An will be proportional to NI*(Xn) XV(xn) at
this point Xn and the entire set measures qi*(x) NI(x) in its full glory in all
space.

III. Refutation of the Three Arguments of Section I

We must now show why the three seemingly very convincing arguments of
Section I were misleading.

1. The first argument is easily discounted. The previous experiments
were simply not the right experiments. Up to now, we have only
designed experiments that would "kill" the wavefunction by looking for
a localized particle. These were not "in vivo" experiments. In analogy
with our biological example, if you do the wrong experiment on an
organism, you will kill it. We previously were doing the wrong
experiment on 14 and thus "killed" it.

2, The unitarity issue is resolved in an interesting way. The only states
that were protected are nondegenerate eigenstates of the Hamiltonian.
These eigenstates are orthogonal to each other, so no contradiction
with unitarity arises. If we try to measure superpositions of two such
states the system will collapse to one state or the other. We are still
able to see the state in its full glory, but we see only one state out of
the set of' completely orthogonal nondegenerate eigenstates of the
Hamiltonian. If we want to see other states such as a superposition of
eigenstates, we must find a different protection since conservation of
energy does not preserve them.

The issue is not to think of measurement as just determining what we
don't know. The real issue of measurement theory is determining what
can manifest itself. If we have an electron passing through two slits,
we can measure its wave function for a single particle and see the full
glory of the interference spectrum. It is only necessary to devise the
right protection.

3. Complete resolution of the third argument will be presented in the
next section but it is interesting and fruitful to consider what happens,
if while performing a protective measurement in one region of space, a
usual position measurement is performed at some other location and
tinds the particle there. Can we violate causality and send signals
faster than light? The answer is no. As an example suppose we have an
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electron in the ground state of the hydrogen atom as shown in the
figure.

"Probability" L
Distribution

Regior of the Location of the
protective expsriment non-prot, live

experi ient

We are doing our protective experiment in the vicinity of the proton and
find the wave function density corresponding to the ground state. While
we are doing our experiment some other physicist makes a non-protective
measurement at a large distance L away from us and finds the whole
particle there. This contradicts the outcome of our protective experiment.
To ovoid possibility of casual connection between these experiments, we
must complete our protective experiment in a time T less than I Vc. For
finite time experin'ent we no longer can be sure that the electron remains
in the ground st .te. There is a finite probability of exciting the state,
which goes like C-ET. This is the probability to make a mistake. On the
other hand, the probability to find the particle at location L is

-L I2E
e

where m is the mass of the particle and E is the binding energy. The only
way to violate causality is to have a binding energy greater than 2mc2 . We
have a nice result. There is no way to consistently describe a single
particle in relativistic quantum theory if the binding energy exceeds
2mc2.

IV. The Two-Vector Reformulation of Quantum Theory

To resolve violation of Lorentz covariance in the wavefunction collapse
problem we must reformulate quantum mechanics. It is poý.sible i o do this by
using the two-vector formulation, The two-vector formulation can be
described as follows, 3nppose we have a region of space where an experiment
is performed. For example. 1 a scattering experiment we start with an
incoming state, call it Wi allow this prepared state to interact and
produce a set of outgoing stateýs corresponding to different outcomes. We want
to select only particles that go into a particular outgoing state 4f2. In classical
physics, if we had a well-defined incoming state there would be only one
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outgoing state. In quantum mechanics there will be an ensemble of outgoing
states. This allows us to define new quantum ensembles that do not have an
analogy in classical physics. These are called pre-selected and post-selected
ensembles. They are characterized by giving two boundary conditions on the
particles. These are the boundary conditions at the start of the experiment
and the boundary conditions at the end of the experiment. That is, if an
incoming state V1 can produce the following set of outgoing states Y2, W3,
etc., then we form separate ensembles for those experiments that produce the
pair (WI1,i 2) and those that produce (Y4IOi/3), etc.

This suggests characterizing each quantum particle in the pre-selected and
post-selected ensemble by two states. Each quantum particle is described at
any instant by two vectors that we will call the history vector and the destiny
vector. This concept will enable us to explain how a distribution that was
extended in space can suddenly be replaced by a distribution that is peaked
near a given position.

What we measure is not p(x) = IV*(x) q(x) but the density

p1 (x) --- W*2(x) XVl(X)

J•* 2((x') Wl(X') dx'

where yl is the history vector and W2 is the destiny vector. In all protective
experiments what is measured is not the average of either of these states but
the above combination. In the usual non-protAWctive experiments, the history
vector and the destiny vector were the same, so this distinction was not
obvious.

Let us consider -Again the paradoxical situation of the argument 3. Let the
initial state 1 I e a superposition of the two localized states. The final state
W2 is one of these localized states. We might obtain it by just looking and not
finding the particle in another place. The paradox is how the particle "jumps"
instantaneously to the first location just by not observing it in the second
location. The way out is that the particle was in the first location during the
whole period between the two measurements! Indeed, the two vector density
p 12(x) is non-zero only when both N1i and x42 are not zero, i.e., only in the first
location. Similarly we can resolve the problem of how an extended particle
becomes localized. The product of an extended particle and a localized
particle is alwtys a localized particle. It is localized all the time.

S. . .. . . . . . . . . . . . . . . . . . . . . . .. -
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We resolve argument 3 by thinking of a quantum system as being described
by two vectors, the history vecf '•r and the destiny vector, rather than by one
vector. We no longer violate ca ality since the description depends also upon
what happens later, not just upon what has happened. If you change your
mind about what you will measure, the destiny vector must be changed all
the way back to the beginning just as we would have to change the history
vector if we had decided to perform a different experiment. This is analogous
to the Einstein-Podolsky-Rosen (EPR) experiment. In EPR, we have already
learned that if we take a single system that is already correlated to another
system, and make a measurement on one of the systems, it immediately
changes the stat of the other system. In an ensemble, the probability
distribution remains unchanged, so we cannot use this to send information
faster than light. In the same way here, the fl, ture state changes the present
for an individual quantum system; but it doesn't change the probability
distribution for an ensemble. Therefore, it cannot be used to transfer
information backwards in time.

Conclusion

We have described a new type of experiment, the protective measurement,
through which we can observe the extended wavefunction of a single particle
in its full glory. This reality of the wavefunction strongly supports a new
interpretation of quantum mechanics, the 2-vector formulation, in which
there are 2 vectors describing a quantum system, the usual vector
propagating from the past and a second one propagating backwards from the
future. We show how this interpretation resolves the arguments given
against the observability of the wavefunction of a single particle.
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ABSTRACT

We report results of an investigation of relativistic causality constraints on the
measurability of nonlocal variables. We show that measurabilit.y of certain nonde-
generate variables with entangled eigenstates contradicts the principle of causality,
but that there are other, certainly nonlocal, variables which can be measured with-
out breaking causality. We show that any causal measurement of nonlocal variables
must ernse certain local information. tor example, f, -r a system of two 3pin-1/2 par-
ticles, even if we take the weakest possible definition of verification measurement,
verification or an entangled stAen must crase, all local information.

1. Measuring Momentum of a Particle

As early as 1931, Landau and Peierlsl showed that relativistic causality iu-
poses new restrictions on the process of quantum measurement. Although soic of
their arguments were not precise, it was conimnonly accepted that we cannot measure
instantaneously nonlocal properties without breaking relativistic causality.

The first example is the ineasuremenut of mnomnentnin of a particle. Consider
a particle localized in a small region. Measurement of its momentum, irrespective
of the outcoxre, will spread the particle dll over the space. Thiee will be a non-
zero probability to find the particle at a very large distance from its original place
immediately after the (instantalmnous) mnomentum measurement, so it seems that the

particle moves faster than light. However, this argument is not decisive. Relativistic
causality states that it is impossihle to send a ,iignal '-ith superluminal velocity.
It does not forbid instantaneous meawsurement of moniovutum, say at t = 0. The
instantaneous measurement interaction will take place all over the space and it
can create particles everywhere. Thus, the probability of finding the particle at
a given location after the momentum zneasuremnent might be independent of what
we did to the particle located far away before the measurement. Therefore, the
possibility of instantaneous momentum measurement does not lead automatically

to thc possibility of sending signils with superluminal velocity.
Nevertheles,;, if we can measure the momentum of aL spin-1/2 particle without

affecting its spin, then we can violate causality. Indeed, let us assume that we know
that at time t = 0 the momentum measurement will be performed. At the time

-t we decide to prepare the state of the particle "up" or "down" according
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to the signal we want to send. Then we can measure the spin component of the
particle which is detected at time i = +c far from its original location and thus send
information with superluminal velocity. (The probability of finding the particle at
a given place is very small, but we can use a large ensemble of identical particles
and thus we can build a reliable superluminal transmitter.)

2. Constraints on Nonlocal Measurements of Two Spin-1/2 Particles

Although momentum measurement is a basic problem, it is still not the
simplest example we may consider. Significant progress in understanding causality
constraints on quantum measurement was made by considering an even simpler
example: measurements of spin variables of two spin-1/2 particles separated in
space. This is the system on which Bohm and Aharonov 2 and later Bell-' analyzed
the EPR argument and reached far-reaching conclusions regarding the nonlocal
structure of quantum theory.

In order to show how measurability of nonlocal variables contradicts rel-
ativistic causality let us consider an operator with the following nondegeneritte
eigenstates:

Iti,) =1 1>,1I 2
10) = 1 1 11)-2
103) = (11)11 1)2 + 1 ) 1)1 )2()

104,) =-72(0 T)dI O) -I ihl 1)2)

This operator corresponds io a nonlocal variable because its eigenstates are nonlocal.
We call the state of the composite system nonlocal when it cannot be represented
as a product of states corresponding to localized parts of the system; these states
are also known as entarngled states.

Let us show that the measurability of this variable contradicts relativistic
causality. To this end we perform the following set of measurements:

i) We prepare state I 1)2 of particle number. 2 a long time before the tiho
=0.

ii) At time t = --r we prepare state 11)1 or Dr of particle Itnunber 1 according
to the message we want to send from particle 1 to particle 2.

iii) At time i = o we measure the variable defined by the nondegenerate
eigenstates of Eq. (1).

iv) At the tirie t =c we measure the spin component of particle 2.
The two events, choosing the spin of 1Urfticle 1 and measurement of the spin of
particle 2, are space like separated, and therefore must bc causally disconnected.
But if we choose spin "up" for particle 1, then the state of the composite system
before the time t = 0 is I j), 1).,, the measurement at the time i 0 (toes riot change it
(since it is an elgenstate), and thus the spin measurement of particle two wil_ yield
"up" with probability oniec:. If, instead, at the time i = -t, we put, the particle 1 ill
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the state "down',' then the state of the composite system before the measurement
(iii) is I I)[ 1).. This state is not one of the eigenstates of the nonlocal operator,
and therefore the measurement at time t = 0 will change it. Since the scalar product
between I 1),I T)2 and the eigenstates is not vanishing only for the cigenstates 103)

and 1I4), the state after t = 0 will be one of those. But for both 103) and 1j4) the
probability to find the spin "up" for particle 2 is just 1/2. We have shown that the
possibility of measuring nonlocal variable described by eigenstates (1) allows us to
change the probability of the result of a spin measurement performed on particle
2 by acting on particle 1 a time only 2f before the measurement on particle 2; and
since the distance between the particles might be larger than 2cc, this procedure
represents a superlumlinal signal transmitter.

3. Measurable Nonlocal Variables

The examples above may lead ts to believe that measurement of any nonlo-
cal variable breaks relativistic causality. This, in fact, was generally believed until

Aharouov and Albert4 found a method involving solely local interactions (hence con-
sistent with the causality principle) which does allow us to measure certain nonlocal
variables. In particular, we can measure the variable a,, + v 2 _. The method applies
the standard von Neumann measuring procedure to a measuring device consisting of
two parts which were prepared in an entangled state before the ineasurement. Each
part of the measuring device interacts with one of the particles for a short time,
and is observed immediately after by i local observer. The combined observations
of the two observers (one at each particle) determines whether the state is IV),, 102)
or belongs to the subspace spanned by IVa) and [04). The feature of this method is
that while it measures U1t + o2. = 0, it does not measure the spin of each particle
separately. The details of the method of nonlocal measurements can be found in
Ref. (5).

It might seem that the measurability of the operator ol, + U2. has something
to do with its having a complete set of cigenstates which are not entangled. Blit this
is not the explanation. The next example shows an operator with nondegeneratc
eigenstates that are all entangled but which is, nevertheless, measurable by local
interactions. The cigenstates of the nondegenerate operator are

101) =-'-(I t)l 1)2 + )I ! l)0 )

104 =-72=(I t)lI 1)2 -I )iI 1)2)

7(2104) = (I I)I 1)2 + I D)1 1)2)

$¢4) 17 )iI £), - I )xl 1)2)

This operator can e: unceasurncd using a set of nonlocal operators with degenerate

eigenstates (such its arl, + U2,), where the particles I and 2 are far from one an-
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other. Recentlyl, the measurability of operators for two spin-1/2 particles has been
analyzed, and it was shown that the only measurable nondegenerate operators are
those with eigenstates of two possible types:

0eI) =IT.),I 4.').

102) =1 T.) 11 1.,)23a

I¢J( 1.)'I ls, Ia (3=)

104) =a +. 1.1'2

I¢,)=• (I1.)1 2,) 4 1 111.' 2,))

102) =-T.(I 1.)l1 l,)2 - 1I ) l1 a.'s)72 (3•b)1 (

with spin polarized "up" or "down" along directions z and z'.
Operators of type (3a), although they rrFer to two separated spins, are effec-

tively local. They can be measured simply by measuring the z component of spill
of the first 1particle and the z' coixponent of spin of the second particle. Op1rators
with the cigelistate!i (3b) are truly nonlocal. They can be measured " in the same
way as ai operator with eigenstates given in Eq. (2) (is. particlular emse of Eq. (3b)).

On the other handf measurability of any nondegenerate operator with eigen-
statch not equivalent to the forms (3a) or (31) implies the possibility of superluminal
colmlunicatiou, i.e., violation of relativistic causality.

4. State Verification Measurements

A measurement of a nondegenerate operator is also a state verification nica-
surenlent for all its tigenstates. The weakest possible definition of a state verification
ineasureient which requires only reliability of the n',asurement is: the verification
nicasurements of the state jVO) intist always yield the answer "yes" if the nleLsured
system has the ilitial "a•te IOU), and o:ust always yield "no" if the system is ini-
tially in an orthogonld statC. One may suspect that the verification of a state with
canonical form (Schlnidt decomposition) different from

1- (I 0 )M I T.)s + I l)1 IL,)) (4)
72

(the form of tl.- eigenstates in (3h)) contradicts relativistic causality; i.e., that
verification of it state

1I1) a- a t,),I 1l,0 + -I 0l 11.,)?, I- $101 0 (5)
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allows superluminal communication. Indeed, it has been shown' that the type
of measurements of entangled states described above, i.e. nondemolition operator
measurements with solely local interactions, cannot measure the state given by the
form (5).

However, an umncasurable quantity should not represent physical reality. If
we want to consider the quantum state as a physical (versus purely mathemati-
cal) concept, it must be measurable. We do know how to prepare this state (the
preparation procedure is al:;o frequently called measurement). But the state (5) can
also be niciured using a new type of verification measurement named an exchange
measurement? The idea is to make simultancois short local interactions with parts
of the measuring device such that the states of the system and the measuring de-

vice will be exchanged. Tie novel point in this method is that local interactions
exchange nonilocal states. The result of the umeasurement calmot be read by two
local observers; we must bring the two parts of the iieasuring device to one place,
In addition, this procedure has another unconventional property. Tile final state of
the system is completely independent of its initial state: it is just the ;nitial state
of the measuring device. The state of the systemi is rormplctcll erased by this state
verification ineasurenment.

It has recently been proven' that any verification of the state

10 )-t (V 1 i.)'11l,)2 + /11.)I1.h') a. f2z (1,0 (/-)

erases all local information. The probable outcome of a local spin measurcment
performed after the state verification umeasueLinent is independent of the state of the
composite system prior to the state verification. The exaniphe considered above of a
mmeasurable nondegencrai.te operator (2) trivially fulfills this result: for all eigemstatCs
we have the property that the probability for any outcome of local spill mneasuremnenit
is the samu. There is no local informatiol, after this nonlocal measurement.

5. Conclusions

Let us formulate the last result for the :;. )mmewhlut inore general case of ia

systemn of two separated particles with several orthogonal states. Conisidcr the
Schmidt decomposition of a state ,1W(¢) of this composite system:

I00) Z _ad i) tIii)n (7)

Here li), and 1i), are local orthonormal bases of state:i of the two particles. Let
us denmte by UO) and Ij(0) the Hilbert spaces of part 1 and part 2 relspectively,
and by H(') and UP4) the subspaces of HM) amid 11(•) which are spanmed by the base
vectors Ii), and Ii)2 corresponding to coefficients axi 0. Then for all initial states
which belong to the Hlilbert space i(')o® II(2), the probabilities p(V) for results of
local measurements ill part 1, performed aft( r verification of the state J'o), himve no
dependence oln tIme initiad state.
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Thus, the erasing effect of the proposed "exchange" measurements is a gene-
ric property of any reliable, causal state verification measurement. The full impli-
cations of this result are not yet clear. It already has helped complete the analysis
of measurability of nondegenerate operators discussed above. It also has been used
to show7 that measurability of certain ideal measurements of the first kind contra-
diets relativistic causality, thus placing a serious doubt concerning the possibility
of generalizing axiomatic quantum theory to the relativistic domain.

We would likc to conclude by stressing the importance of measuring nonlocal
properties via local ii teractions (with separate parts of the measuring device pre-
pared in an entangled state). The same method can be used for so-called "multiple-
time" measurements" which open the way to many new quantum phenomena?
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QUANTUM ANOMALIES AND THREE FAMILIES
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ABSTRACr

Chiral anomalies and their cancellation are a fun damcntal quantum effect in relativistic
field theory and can be fruitfully rcgarded as a topological phenomenon related to the
Aharanov-Bohm effect. A possible relationship of such anomaly cancellation to the
occurrence of three quatk-lepton famrilies is discussed.

It is a delightful honor to write for the sixtieth birthday of Yakir Aharanov with
whom I have enjoyed many stimulating discussions about physics. Although best known
for his contributions to the foundations of quantum mechanics, Yakir's broad knowledge
makes him a useful colleague concerning any topic in theoretical physics.

In gauge field theory, chiral anomalies reflect a fundamental aspect of quantum
theory and are a topological phenomenon related to the Aharanov-Bohin effect [1].

Gauge field theory is the basis of the suiccessful standard model of particle
interactions. In such a theory one first constructs a gauge-invariant lagrangian
Ln (un, 3^) with bare quantities. At the quantum level, one wishes to renormalizc to

LB = Li (Olt, aoltj) + Counter-terms

such that LR is invariant under a gauge invariance isomorphic to the original one. This
requires satisfaction of Taylor-Slavnov identities.

One peculiar Feynman diagram, a closed fermion loop with three gauge hosons
attached (triangle diagram) spoils the possibility of such renormalization because of the
chiral anomaly [2]. Unless this anomaly is uancelled by appropriate choice of chiral
fermion representation of the gauge proup the field theory is internally inconsistent and
violates the requirements of renormalizability and unitarity.

The anomaly may be calculated local.y through the Feynman diagram, or by
global topological consideraticns of the Atiyah-Singer index 131. The second approach
makes clear how die chiral anomaly [21 i.. a . .to the AR -Fect 11..

Having established that connection, I now relate the AB effect further to the flavor
question: why are there six flavors of quark u,d,s,c,b,t? It has long been thought that the
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replication of the quark flavors may be a result of anomaly concellation. For example, in
1979 there were attempts using SU(N) grand unification to find simple representations
whick. lel to three fantifie3 under an SU(5) subgroup [41; that program had some
successes but C:d not realiy answer the basic question in a convincing manner.

In the standard model lhe chiral anomaly is cancelled between quarks and lel tonsin each family. This cancellation can be made to look non-trivial; e.g. for Y1 the

particles (u, d)L 4L, aL, (v, e)L and iL give the contributions

6(1/6)3 + 3(- 2/3)3 + 3(113)3 + 2(- 1/2)3 + (1)3

which add to zero. Actually, this reflects the vanishiuik average electric charge. In any
case, it gives no insight on why the flavor number equals six.

Our proposal [5] is to extend the standard clectroweak gauge group to
SU(3)L x U(1)x and to -zsign the leptons to antitripleis e.g. (e-, v., e+)L with X - 0 and
similarly for the second and third families. The quarks of the first family are in the triplet
(ud,D)L where Q(D) = 4/3 and similarly (c,s,S)L for the second family. In the third
family the quarks are assigned to an antitriplet (b,tT)L with Q(T) =- + 5/3. The X values
are respectively - 1/3, - 1/3, + 2/3 leading to a cancellation of anomalies between the
families each of which is separately anomalous.

To break the sytimetry to SU(2)L x U(l)y the Higgs sector contains a triplet with
X = + 1. All three exotic quarks acquire mass, as do five g:.uge bosons: the Z' and
dileptons (Y--, Y-), (Y++, Y+). Because of Z' - Z mixing the relevant scale is limited
below by M(Z') > 300 GeV and M(Y) > 230 GeV, this last being coincident with the
empirical lower limit [6]. At first sight, the new scale appears to be unrestricted from
above but this is not the case for an interesting reason. The group theory of embedding
SU(2) x U(I) in SU(3) x U(I) requires that sin 2 0 < 1/4. Phenomenologically
sin 2 0= 0.233 at t = Mz and increases with It, becoming 0.25 at [L - 2.2 TeV. This
limit is singular, however, and gx becomes strong-coupled so the upper limit is more
nearly M(Z') < 1 TcV and both the Z' and Y are hence accessible to the supcrcollider.

In summary, the chiral anomaly of quantum theory dictates the chiral fennion
content. Explication of flavor predicts dileplons (and Z' plus exotic quarks) at SSC.

Incidentally this "331" model gives insight into other features of the standard
model from a n,-w perspective, such as flavor-changing neutral currents and th,- GIM
mechanism, charge quantization, possihle neutrino masses and grand unification. These
questions are under investigation.

This work was supported in part by the U.S, Department of Energy under Grant
No. DE-FG05-95ER-40219.
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EXPERIMENTS PURSUANT TO DETERMINING

THE DURATION OF BARRIER TRAVESAL IN QUANTUM TUNNELING

M. J. flagianai and L. Zhao
Department of Electrical and Computer Enyiucering, Florida International University

Miami, YL 93199, USA

ABSTRACT

Larvr/STM experirmcnts based on nmodulation of the barrier height ijy the electric
field of light will be used to examinre tile duration of barrier traversal. The STM
built for these measurements has decreased noise and improved stability. Our Cal-
eulatiorrs suggest that ia 670 run laser diode at a power density of 100 W/etrn will
reduce the turinling current, which is contrary to miost phenoflrena cart ' , laser
illumination.

The question of tunneling times (i.e. traversal, celleution, and dwell times)
has practical significance assd has beten the focus of much interest and controversy
[1]. Measurements rrf tunnel conductance in hetcrostructures 12) and experiments
with Josephson junctions [31 suggest that a specific time is associated with barrier
traversal. Quantunt mechanics provides useful results regarding tunneling but does
not describe the motion of particles within the classically forbidden region,

A variety of theoretical pro)cedures has been used to determine tunneling
times, with different results [1]. Most of these methods give a definite value of
traversal time for a specific problemu, which appelars inconsistent with the statis-
tical nature of quantum plbenimncrsa. Distributions of tunneling times have been
predir:ted using Feynman path integrals [14 and Bohim's causal interpretation ef
quanitum mechanics [5], but they do ntot agree.

We model tunneling [6] un the basis of enkergy fluctuations consistent with
the uncertainty principle. Cohen {7[ postulated that the probability of a fluctuation
decreases exponentially with the lrrodiict of the. magnitude A R' and duration At,
which product we refer to as thle ;tctir of; a fluctuation, lie did not tre.es tunneling
times, and considered only the most i)robable fluctuations (muininuns action permit-
ting tunneling), thus classically deriving the WK13 solutiron for an opaque barrier.
In previous work we snodeled tile full range of fluctuations to obtain distributions
of the time for traversing static rectangular barriers. For large barriers these dis-
trihutiocis are leptokurtic awd ucntercd at thIn semiclassic:al time (the classical time
for traversing the inverted barrier 181) 'Flirt distributions are platykurtic (broad)
for small barriers.

Several experinicntrd rnethrods have been used to e!xamine the duration of
tunnteling. I) Analyses of merasured to riot' conductance [21 suggest that the response
of image charges varies with bhrrier length. The location of the crossover from static
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to dynamic response appears consistent with the semiclassical traversal lime, but
there is much scatter in the data so this result is not definitive. 2) The effect
of a magnetic field on tunnel conductance was studied [91, but the data may be
explained without reference to tunneling times 110]. 3)Tunneling dynamics was
studied in a shunted Josephson junction 13] but this involves tunneling between
the states of a device and does not directly relate to tunneling by particles. 4)
An operational tunneling time was determined from current rectification in a laser-
illuminated scanning tunneling microscope (STM) [11], but the measured decrease
in current with increasing barrier length may be explained without reference to
tunnelip.g times.

We have begun a project in which laser/STM experiments will be made
with the objective of determining the duratioi, of barrier traversal, but our work is
based on barrier modulation rather than current rectification used in earlier studies
[11]. Laser illumination of an STM junctionl modulates the barrier height. Theory
suggests [8] that tunneling has two distinct regimes as a function of frequency, the
crossover between them occurring when the angular frequency of the modulation
equals the reciprocal of the traversal tintic,

We are completing a novel STM designed for these experiments. The circuit
is similar to that of Park and Quate [121, but customized for decreased noise and
increased stability. The preamplifier is chopper stabilized, and periodic multivalued
illumination is used with boxcar sigi-al averaging. Double sample and hold circuits
minimize the droolp while feedback is disengaged when the laser is pulsed. The
quadrant electrodes on the piezoelectric tUbe scanner are fed with balanced X and
Y supplies, and the inner electrode is fed with an unbalanced Z supply to provide
orthogonal positioning of th.i tip. Power MOS-.FETs arc used in place of bipolar
transistors in the high volt. ! sections to increase isolation and lower noise. A
differential micrometer with a crossld-roller translation stage provides increased
mechanical stability.

We have modeled the effect of a laser oil the current in an STM. A rectangular
barrier was assumed, but more appropriate expressions for the potential [13] will
be implemented in later studies. We divide the barrier length into N segments of
length d/N, such that each part is small enough that the potential is approximately
a constant V during transit by Ut electron. We assume that an energy fluctuation
causes the particle to traverse each segment, and set AE = V - R + M-nv/2, where
the particle has mass is, velocity v, and nonperturbed energy E,. In the present
calculations, within each segment we consider only the most probable fluctuations,
those with the least action permitting tunneling. Thus, within each segment the
velocity v -- V2(V-Pj-h')/m, the action of the fluctuation A =d2m(V--E)/N, and the
traversal time 2' dV-mT2-(V--E)i/N which is the semiclassical value 16[.

In each simulation the values of '1' and A are calculated within each segment,
using the instantaneous value of the Modulated potential for V, and summed to
determine T, and A, which are the traversal time •and action for tunneling th, 'ugh
the entire barrier.This calculation is made for M difrerent values o)f the modulation
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phase at which the electron enters the barrier. For each entry phase the transmission
is determined by assuming the probability of the fluctuation is proportional to
exp(-A./h). Finally, the mean value is normalized by dividing by the value without
modulation, to obtain the relative value of the current with modulation. The values
of N and M are increased untill these parameters are found to have negligible effect.
The results of several simulations are presented in the following two figures.

Figure 1 shows the relative current as a function of the modulating-wavelength
for 4.0 eV electrons with a barricr length of 6.01A and height of 5.0 V. The three levels
of modulation correspond to illumunation at different power densities. Since there
is a distribution of traversal times, instead of the definite values of time implicit in
other analyses [8[, the transition between the regime for low and high modulation
frequencies is broad. Our long-term objective is to examine this crossover by mea-
suring the current when two or more lasers sequentially illumine an STM junction
with similar power densities at different frequencies.

If the modulation frequency is high enough, Fig.] shows that barrier modu-
lation tends to inhibit tunneling. Figure 2 shows the relative current as a function
of the level of modulation for 4.0 eV electrons with a barrier height of 5.0 V and
a modulating wavelength of 670 nm. The data in Fig.2 suggest that for barrier
lengths between 6 and 10 A the current decreases as the power density is increased.
In our first experiments we will d.etermine the effects of power density on tunneling
current when the STM junction is illuminated with a 670 nm laser diode. A power
density of 100 W/crn2 , providing adequate modulation, may be obatined with a 20
mnW laser diode focused to a minimal spot size.

A variety of phenomena occur in laser/STM experiments [141 including cur-
rent rectification, photo-assisted tunneling, thermal-assisted tunneling and thermal
expansion, as well as the effects which we have modeled, In our'initial experiments
the use of a visible laser would decrease current rectification [15). The relatively
low power density would reduce thermal effects as well as current rectification, but
all of these effects must be considered. Subsequent experiments made to examine
the crossover in Fig.1 would be more difficult to interpret because the competing
phenomena have different frequency dependence.
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Figure Captions

Fig. 1. Relative current vs. iiiodulating-wavelength for 4,0 eV electrons with

barrier length = 6.0 A and height - 5.0 V.

Fig. 2. Relative current vs. level of modulation for 4.0 eV electrons with

barrier height = 5.0 V and modulating wavelength 670 nm.
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ABSTRACT

The non-perturbative solution to the strong CP problem with magnetic monopoles
as originally proposed by the author is described. It is shown that the gauge or-
bit 8pace with gauge potentials and gauge tranformations restricted on the space
boundary and the globally well-defined gauge subgroup in gauge theories with a
0 term has a monopole structure if there is a magnetic monopole in the ordinary
space. The Dirac's quantization condition then ensures that the vacuum angle 0
in the gauge theories must be quantized to have a well-defined physical wave func-
tional. The quantization rule for 0 is derived as 0 = 0, 27r/n (n $k 0) with n being the
topological charge of the magnetic monopole. Therefore, the strong CP problem is
automatically solved with the existence of a magnetic monopole of charge :L1 with
0 : -27. This is also true when the total magnetic charge of monopoles are very
larp.! (ItiI _ 10'2•r). 'The fact that the strong CP violation can be only so small or
van :hing may he a signal for the existence of magnetic monopoles and the universe
is open.

1. Introduction and Summary of the Main Results

Yang-Mills theories1 and their non-perturbative effects have played one of

the most important roles in particle physics. It is known that, in nron-abelian gauge
theories a Pontryagin or 0 term,

32w.2

can be added to the Lagrangian density of the system due to instanton 2 effects
in gauge theories. This term can induce CP violations for an abitrary value of 6.
Especially, such an effective 0 term in QCD may induce CP violations in strong inter-
actions. In our discussions relevant to QCD, 0 is simply used to denote 0+ urg(detM)
effectively with M being the quark mass matrix, when the effects of electroweak
interacti,,ns are included. However, the experimental results on the neutron electric

'Pernanent addrt•a
2
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dipole moment strongly limit the possible values of the 0 in QCD (!5 io-, modulo
27 for example). This is the well-known strong CP problem. One of the most
interesting understanding of the strong CP problem has been the assumption of
an additional Peccei-Quinn U(l)pQ symmetry4, but the observation has not given3

evidence for the axions' needed in this approach. Thus the other possible solutions
to this problem are of fundamental interest.

Recently, a non-perturbative solution to the Strong CP problem with mag-
netic monopoles has been proposed originally by the author0 . In our solution6 , it is
proposed that the vacuiun angle with magnetic monopoles must be quantized. Our
quantization rule is derived essentially by two different methods. This is given by
0 = 0, or 0 = 2rN/n (n $ 0) with integer a being the relevant topological charge of the
magnetic monopole and N may be fixed as 1 in the method 1 and is an arbitrary
integer in the method 2. The first method' is to show the existence of a monopole
structure in the relevant gauge orbit space in Scherodinger fonnulation',", and using
the Dirac quantization rule for having a well-defined wave funtional. The second
method is to show that there exist well-defined gauge transformations which will en-
sure the quantization of 0 by the constraints of Gauss's law due to the non-abelican
electric charges carried by the magnetic monopoles proportional to a as noted 1a Ref.
21 and generalized in Ref.22 to the non-abelian case for the generalized magnetic
monopoles'7 .

Therefore, we conclude that strong CP problem can be solved due to the
quantization of 0 in the presence of magnetic mnonopoles, for example monopoles of
topological charge n = ±1 with 0 = ±2-r, or n > 27r10" with 0 < 10'. Moreover, the
existence of non-vanishing magnetic flux through the space boundary implies that
the universe must be open. In this note, we will briefly describe and review our
solution to the strong CP problem with mf.gnetic monopoles with the first method.

2. Quantization Condition on 0 and Solution to the Strong CP Problem

The main idea of our discussions is based on the follows. A wave functional
in the gauge orbit space corresponds to a cross section12 of the relevant fiber burdle
for the theory. Topologically, if there is a non-vanishing gauge field as the curvature
in the gauge orbit space, then the flux of the curvature through a closed surface
in the gauge orbit space must be quantized to have a cross section7-'. Physically,
this is equivalent to say that the magnetic flux through the closed surface must be
quantized according to the Dirac quantization condition in order to have a well-
defined wave functional in the quantum theory.

In this method, we will extend the method of Wu and Zee in Ref.7 for the
discussions of the effects of the Pontryagin term in pure Yang-Mills theories in the
gauge orbit spaces in the Schrodinger formulation. This formalism has also been
used with different methods to derive the mass parameter quantization in three-
dimensional Yang-Mills theory with Chem-Simons termt-8 It is shown in Ref. 7
that the Pontryagin term induces an abelian background fiel& or an abelian structure
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in the gauge configuration space of the Yang-Mills theory. In our discussions, we
will consider the case with the existence of a magnetic monopole. We will show
that magnetic monopolesg-'' in space will induce an abelian gauge field with non-
vanishing field strength in gauge configuration space, and magnetic flux through a
two-dimensional sphere in the induced gauge orbit space on the space boundary is
non-vanishing. Then, Dirae condition l t-ý in the corresponding quantum theories
leads to the result that the relevant vauum angle U must be quantized as 0 =
2wr/n with n being the topological charge of the monopole to be generally defined.
Therefore, the strong CP problem can be solved with the existence of magnetic
monopoles.

We will now consider the Yang-Mills theory with the existence of a magnetic
monopole at the origin. Our derivation applies generally to a gauge theory with an
arbitrary simple gauge group or a U(1) group outside the monopole. This gauge
group under consideration may be regarded as a factor group in the exact gauge
group of a grand unification theory. Note that there can be Higgs field and unifi-
cation gauge fields confined inside the monopole core, which will be ignored in our
discussion outside the monopoles.

As we will see that an interesting feature in our derivation is that we will use
the Dirac quantization condition both in the ordinary space and restricted gauge
orbit space to be defined, The Lagrangian of the system is given by

C£ Jd-z{J-'F:'FG-v + pu 1 (2)
i32w0 - I

We will use the Schrodinger formulation and the Weyl gauge Au = 0. The conjugate
momentum corresponding to A? is given by

4 -- = A? + _,ikFia. (3)

In the Schrodinger formulation, the system is similar to the quantum system of a
particle with the coordinate qi moving in a gauge field Ai(q) with the correspondence 6-"

qi (t) -* A,ý(x, 1), (4)

Ai(q) --- " A (A (x)), (5)

where
A?(A(x)) = 0"jkjk, (6)

Thus there is a gauge structure with auge pnotential A in this formalism within
a gauge theory with the 8 term included. Note that in our discussion with the
presence of a magnetic monopole, the gi ige potential A outside the monopole
generally need to be understood as well 6 ied in each local coordinate region. In
the overlapping regions, the separate gauge potentials can only differ by a well-
defined gauge trap formationt'. In fact, single-valuedness of the gauge function
corresponds to the Dirae quantization condition'u. For a given r, we can choose two
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extended semi-spheres around the monopole, with 0 E [7/2 - 6, r/2 + 6](0 < 6 < 7r/2)

in the overlapping region, where the 0 denotes the 0 angle in the spherical polar
coordinates. For convenience, we will use differential forms10 in our discussions,
where A = Aidxi, F = FJ Fhdx' dxk, with F = dA + A' locally. For our purpose to discuss
about the effects of the abelian gauge structure on the quantization of the vacuum
angle, we will now briefly clarify the relevant topological results needed, then we
will realize the topological results explicitly.

With magnetic monopoles, we need to generalize the gauge orbit space of
ordinary gauge theories to include the space boundary which is noncontractible
with non-vanishing magnetic flux quantized according Dirac quantization condi-
tion. With the constraint of Gauss' law, the quantum theory in the finite space
region in this formalism is depcribed in the usual gauge orbit space U/C. The 11
is the space of well-defined gauge potentials and V denotes the space of continu-
ous gauge transformations with gauge functions mapping the space boundary to a
single point in the gauge group. Due to the exitence of magnetic monopoles, the
gauge transformations on the space boundary S3 can be non-trivial, the physical
effects of the well-defined gauge transformations need to be considered. As it is
known that"2 , only the gauge transformations generated by the generators commut-
ing with magnetic charges may be well-defined globally. On the space boundary, U
will also be used to denote the induced gauge configuration space with gauge po-
tentials restricted on the space boundary, and 9 also denotes the continuous gauge
transformations restricted on the space boundary and well-defined gauge subgroup.
Then we will call corresponding U/g as restricted gauge orbit space. Collectively,
they will be called as the usual space for the finite coordinate space region and the
restricted space on the space boundary. There should not be confusing for the no-
tations used both for the usual spaces and restricted spaces. As we will see that the
magnetic charges up to a conjugate transformation are in a Cartan subalgebra of
the gauge group, then on the space boundary .15, we need to consider a well-defined
gauge subgroup G = U(1) for the quantization of 0. Similar to the usual gauge orbit
space on thy: compactified coordinate space by restricting to gauge functions map-
ping the space boundary to a single point in the guage group, the restrieted gauge
orbit space is well-defined since the space boundary S2 is compact.

Note that the physical meaning of the restricted gauge orbit space can be
understood as follows. Let wPh,(A(x)) denote the physical wave functional and
%Y,4,0(A(x)) is, be its restriction on the space boundary S2 which actually only de-
pends on the direction of x. Then, the *p 1. I10 must be invariant under the gauge
transformi' lions well-defined on the entire space boundary. Namely the .Dh, sV is
defined in the restricted gauge orbit space. However, in the finite space region, the
••,,A(x)) for finite x is only required to be invariant, under the gauge transforma-
tions with gauge function going to the identity at the spatial infinity. Namely, it
is defined the usual gauge orbit space. The entire * , is then well-defined in the
generalized gauge orbit space as described.

Now consider tIhe following exact jiomotopy sequence' 3 both for the usasal
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and restricted spaces:

lNt(u) -1 UN(u/C) -IIn•,_(Q) -U nN_.(U) (N> 1). (7)

Note that homotopy theory has also been used to study the global gauge anomalies
14-16, especially by using extensively the exact hornotopy sequences and in terms
of James numbers of Stiefel manifolds17

. One can easily see that U is topologically
trivial, thus iIN(U) = 0 for any N. Since the interpolation between any two gauge
potentials AL and A2

Al =tA1 ±,, (I - )A2  (8)

for awiy real t is in U (Theorem 7 in i~ef. i , and Ref.7). since A, is transformed as a
gauge potential in each local coordinate region, and in an overlapping region, both
A, and A2 are gauge potentials may be defined up to a gauge transformatiun, then
A, is a gauge potential which may be defined up to a gauge transformation, namely,
A ,-U. Thus, we have

0 L.II- (/(U/) - IIN.-1 () i. 0 (N > 1). (9)

This implies that
I1N(U•/) M IIN-1(Q) (N > 1). (10)

As we will shiow that in the presence of a magnetic monopole, the topological
properties of the system are drastically different. This will give important conse-
quences in the quantum theory. In fact, the topological properties of the restricted
gauge orbit spaces are relevant for our purpose since as we will see that only the
integrals on the sp boundary S2 are relevant in the quantization equation for the
0. Now for the re: . spaces, the main topological result we will use is given by

11•U/9) 5 fl1(9) = HI1(G) o 113(G), (11)

for a well-defined gauge subgroup G. As we will see that in the relevant case of
C -= U(1) for our purpose a12(G) = 0. The condition I12(U/9) 0 0 corresponds to the
existence of a magnetic monopole in the restricted gauge orbit space. We will first
show that in this case ;- A O, and then demonstrate explicitly that the magnetic flux
f5 ? f o0 can be nonvanishing in the restricted gauge orbit space, where J denotes
the projection of T into the restricted gauge orbit space.

Denote the differentiation with respect to space variable x by d, and the
diffei entiation with respect to parameters {It I i = 1,2...} which A(x) may depend on in
the gauge configuration space by b, and assume d6+bd=O. Then, similar to A = Amdx"
with p replaced by a, i, x, A = ALadxi,F ý 1F•Ladxjd•k and ir(LOLP) = - 646 for a
basis {L4 j a = 1,2,..., rank(G)} of the Lie algebra of the gauge group G, the gauge
potential in the gauge configuration space is given by

A dA(A(.))6A,(.). (12)

Using Eq.(6), this gives

A4= 1 f d3XzkFj• (x)6A(x) 0 r(AF), (13)
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with M being the space manifold. With 6F = -DA(6A) = -{d(EA) + AdA - SAA), we
have topologically

;F = 6 tr[ADA(A) A L dtr(A6A) = 2 tr(6A6A). (14)

Usually, one may assume A - 0 faster than 1/r as x -- a , then 7 this would give
r = 0. However, this is not the case in the presence of a magnetic monopole.
Asymptotically, a monopole may generally give a field strength of the form 9'-1,1 7

fq = -L-,k(f)kG( (15)

with 0 being the unit vector for r, and this gives A - O(1/r) as x -" o. Thus, one
can see easily that a magnetic monopole can give a nonvanishing field strength F
in the gauge configuration space. To evaluate the T, one needs to specify the space
boundary aM in the presence of a magnetic monopole. we now consider the case
that the magnetic monopole does not generate a singularity in the space. In fact,
this is so when monopoles appear as a smooth solution of a spontaneously broken
gauge theory similar to 't Hooft Polyakov monopole9 . For example, it is known
that18 there are monopole solutions in the minimal SU(5) model. Then, the space
boundary may be regarded as a large 2-sphere S2 at spatial infinity. For our purpose,
we actually only need to evaluate the projection of F into the gauge orbit space.

In the gauge orbit space, a gauge potential can be written in the form of

A = q-'ag + y-'dg, (16)

for an element a E U/1 and a gauge function g E C. Then the projection of a form
into the gauge orbit space contains only terms proportional to (6a)" for integers n.
We can now write

6A = g-'[6a - D 4(6gg-')]g. 
(17)

Then we obtain

=htrf. a) 20~M(8

where f = da + a2. With son'e calculations, this can be simplified as

A = A ± A ir[fbgg-'l (19)

where
= 2f2J ), (20)

is the projection of A into the gauge orbit space. Similarly, we have

.F Js/ tr{[do - D0 (Agf-)][do - D0(6g-')l} (21)

or _ tr[b.D.(6gg-') + D.(Ggg-U)6-Do.(Og')D.(Ogg-D)O 
, (22)

____ -
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where f•_ j t r(•a6a). (23)

Now ali our discussions will be based on the restricted spaces. To see that the flux
of P through a closed surface in the restricted gauge orbit space U/1 can be nonzero,
we will construct a 2-sphere in it. Consider an element a E UI/, and a loop in 0. The
set of all the gauge potentials obtained by all the gauge transformations on a wiih
gauge functions on the loop then forms a loop C' in the gauge configurations space
U. Obviously, the a is the projection of the loop C' into U/C. Now since I1.(U) = 0
is trivial, the loop Cl can be continuously extented to a two-dimensional disc D2 in
the u with 8D 2 = C', then obviously, the projection of the D2 into the gauge orbit
space is topologically a 2-sphere S' c U/9. With the Stokes' theorem in the gauge
configuration space, We now have

ID7 I= ' 6A= jA. (24)

Using Eqs.(19) and (24) with 6a = 0 on C', this gives

, = 22- , [-tr'] (25)

Thus, the projection of the Eq.(26) to the gauge orbit space gives

f • -=2't L' f g-'), (26)

where note that in the two S2 are in the gauge orbit space and the ordinary space
respectively. We have also obtained this by verifying that

1 trJ6aD,(6gg') + D4(69 g-')ba - (27)

or the projection of f, Fr gives f,. Y.

In quantum theory, Eq.(26) corresponds to the topological result 112(U/O) r
II(g) on the restricted spaces. The discussion about the Haiiltonian equation
in the schrodinger formulation will be similar to that in Refs.7 and 8 including the
discussions for the three-dimensional Yang-Mills theories with a Chern-Simons term.
We need the Dirac quantization condition to have a well-defined wave functional in
the formalism. In the gauge orbit space, the Dirac quantization condition gives

12; = 2,,k, (28)

with k being integers. The Dirac quantization condition in the gauge orbit space
will be clarified shortly. Now let I be the field strength 2-forru for the magnetic
monopole. The quantization condition is now given by'7

(!rP{Jfl = exp{Go = erpI4xJ 'Hj E=Z.(
S2
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Where Go is the magnetic charge up to a conjugate transformation by a group
element, Hj (i=1, 2,...,r=rank(G)) form a basis for the Cartan subalgebra of the
gauge group with simple roots ai (h4,2,...,r). We need non-zero topological value
to obtain quantization condition for 0. As it is known from Fef.12, only the gauge
transformations commuting with the magnetic charges can be globally well-defined,
only those gauge transformations can be used for determining the global topological
quantities, Consider g(x,t) in the well- defined U(1) gauge subgroup commutative
with the magnetic charges on the G1

yg(w.t) IrE s2 e7p{4wmtE H~~iH a 2[ t " j < aj, ai >.

with m being integers and t u [0,1 . In fact, m should be identical to k according to
our topological result [l2(U/1) L i1(C). The k and rn are the topological numbers on
each side. Thus, we obtain in the case of non-vanishing vacuum angle 0

0 = LC (n A 0), (31)

Where we define generally the topological charge of the magnetic monopole as

n = -2 < 6,0' > (32)

which must be an integer17 . Where

2a, 
(33)• , '< a',i. >i

the minus sign is due to our normalization convention for Lie algebra generators.
Note that the parameter t of g(x,t) in eq.(30) may be regarded as the time parameter
topologically when the time evolution is included, the two end points of the closed
loop then correspond to the time infinities, The g(x,t) is not a constant in the entire
spacetime, and does not generate a Nother symmetry. The non-trivial topological
properties ensure that the non-trivial spacotime dependence will be maintained
when continuous Loreutz transformations are implemented. Consequently, the re-
quirement of gauge invariance corresponding to the g(x,t) will not eliminate 'my
charged configurations.

Therefore, we conclude that in the presence of magnetic monopoles with
topological charge ±1, the vacuum angle of non-abelian gauge theories must be ±2r,
the existence of such magnetic monopoles gives a solution to the strong CP problem.
But CP cannot be exactly conserved in this case since 0 = ±27 correspond to two
different monopole sectors. The existence of maany monopoles can ensure 0 -. 0, and
the strong CP problemn may also be solved. In this possible solution to the strong
CP problem with 0 < 10-, the total magnetic charges present are mnl > 27r10 9 . This
may possibly be within the abundance allowed by the ratio of monopoles to the
entropy'9, but with the possible existence of both monopoles and anti-monopoles,
the total number of magnetic monopoles may be larger than the total 1-rugnetic
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charges. Generally, one needs to ensure that the total number is consistent with
the experimental results oil the abundance of monopoles. The n = ±2 may also
possibilely solve CP if it is consistent with the experimental observation,

Note that we only considered non-singular magnetic monopole in the space.
For 't Hooft Polykov monopole, the full gauge group inside the monopole is sim-
ply connected, it will not give any boundary contribution to the term in Fq.(26).
However, outside the monopole, the gauge symmetry is spontaneously broken, it
is known that the unbroken gauge group cannot be simply connected to have
monopole solutions. For example, in SU(5) model, inside the monopole, SU(5)
is simply connected; outside the monopole the exact gauge group G=SU(3)xU(1)
uatisfies Ill(G) = z. We expect that in general, the GUT monopoles are smooth
solutions, and therefore cannot have a mathematical boundary at a given short dis-
tance around the monopole relevant to our boundary contribution. Therefore, tle
realistic world meet the condition to have our solution to the strong CP problem.

The effect of a term proportional to &"AOtPFA0 in the presence of magnetic
charges was first considered25 relevant to chiral symmetry. The effect of a simi-
lar U(1) 0 term was discussed for the purpose of considering the induced electric
charges92 •s quantum excitations of dyons associated with the 't Hooft Polyakov
monopole and generalized magnetic monopoles"', 1. Note that since our solution
needs non- vanishing magnetic flux through the space boundary, this implies that
,)mly an open universe car be consistent with our solution. Note that the relevanlce
to the UA(1) problem is discussed in Ref. 23.
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